Skip to main content

Author: AUFTAU

Israeli Breakthrough in Treating PTSD

World first: TAU-led team shows success of oxygen therapy in alleviating symptoms of PTSD in military veterans.

Researchers from Tel Aviv University and Israel’s Shamir Medical Center were able to successfully relieve the symptoms of post traumatic stress disorder (PTSD) in military combat veterans using a new protocols of hyperbaric oxygen therapy (HBOT). In a controlled clinical trial involving Israeli army veterans who suffered from treatment-resistant PTSD, the approach demonstrated significant improvement in all classes of symptoms.

According to the World Health Organization (WHO), almost 4% of the global population, and 30% of all combat soldiers, develop PTSD. 

Hyperbaric medicine involves treatments in a pressurized chamber where atmospheric pressure is higher than sea-level pressure and the air is rich with oxygen. Considered a safe form of treatment, hyperbaric oxygen therapy is already used for a range of medical conditions. Evidence gathered in recent years indicates that special hyperbaric protocols can improve the supply of oxygen to the brain, thereby enhancing the generation of new blood vessels and neurons. It must be noted that HBOT treatments require the evaluation and supervision of qualified physicians. Moreover, for medical indications it should be given using a certified chamber with appropriate quality assurance using the exact studied treatment protocols. 

The breakthrough research was led by Prof. Shai Efrati, Dr. Keren Doenyas-Barak, and Dr. Amir Hadanny of Tel Aviv University’s Sackler Faculty of Medicine and Sagol School of Neuroscience in cooperation with Shamir Medical Center. The team also included Dr. Ilan Kutz, Dr. Merav Catalogna, Dr. Efrat Sasson, Gabriela Levi and Yarden Shechter of Shamir Medical Center.

Unloading Pain for a Better Future

The study included 35 combat veterans of the Israel Defense Forces (IDF) who suffered from PTSD that was resistant to both psychiatric medications and psychotherapy. 

“The veterans were divided into two groups: one group received hyperbaric oxygen therapy while the other served as a control group,” explains Dr. Keren Doenyas-Barak of Shamir Medical Center. “Following a protocol of 60 treatments improvement was demonstrated in all PTSD symptoms, including hyper-arousal, avoidance, and depression. Moreover, both functional and structural improvement was observed in the non-healing brain wounds that characterize PTSD. We believe that in most patients, improvements will be preserved for years after the completion of the treatment.”

“This study gives real hope to PTSD sufferers. For the first time in years the study’s participants, most of whom had suffered from severe PTSD, were able to leave the horrors behind and look forward to a better future.”

Illustration: Clinical example of functional brain imaging by fMRI.  The reduced brain activity in the frontal lobes of the brain (responsible among others for emotional regulation and executive functions) and in hippocampus (responsible for memories functions) is improved after Hyperbaric Oxygen Therapy (HBOT).

Emotional Trauma Can Cause Physical Damage

“Today we understand that treatment-resistant PTSD is caused by a biological wound in brain tissues, which obstructs attempts at psychological and psychiatric treatments,” explains TAU Prof. Shai Efrati. “With the new hyperbaric oxygen therapy protocols, we can activate mechanisms that repair the wounded brain tissue. The treatment induces reactivation and proliferation of stem cells, as well as generation of new blood vessels and increased brain activity, ultimately restoring the functionality of the wounded tissues. Our study paves the way to a better understanding of the connection between mind and body.”

“Our results indicate that exposure to severe emotional trauma can cause organic damage to the brain,” says Prof. Efrati. “We also demonstrate for the first time that direct biological treatment of brain tissues can serve as a tool for helping PTSD patients. Moreover, our findings may be most significant for diagnosis. To date, no effective diagnostic method has been developed and diagnosis of PTSD is still based on personal reports which are necessarily subjective – leading to many clashes between the suffering veterans and the authorities responsible for treating them. Think of a person who comes to the emergency room with chest pains. The pain might be caused by either a panic attack or a heart attack, and without objective EKG and blood tests, the doctors might miss a heart attack. At present we are conducting continuing research in order to identify the biological fingerprint of PTSD, which can ultimately enable the development of innovative objective diagnostic tools.”

 

Prof. Shai Efrati

Prof. Efrati is an Associate Professor at TAU and director of the Sagol Center for Hyperbaric Medicine and Research at Shamir Medical Center. He is also the co-founder and Chair of the Medical Advisory Board at Aviv Scientific LTD, a company that applies the hyperbaric oxygen therapy protocols developed from his team’s research to enhance the brain and body performance of aging adults. 

Prof. Oded Lipschits Awarded the 2022 EMET Prize in Archaeology

The annual prize is considered the “Israeli Nobel Prize”.

Prof. Oded Lipschits, head of The Sonia & Marco Nadler Institute of Archaeology at The Lester and Sally Entin Faculty of Humanities at Tel Aviv University was announced as a recipient of the 2022 EMET Prize (for art, science and culture). He will be awarded the prize in June this year, in the presence of the Prime Minister of Israel.

The Researcher of the Great Empires

Prof. Lipschits was born in Jerusalem, a city which is very central to his research pursuits. He has served for more than a decade as Head of the Institute of Archaeology at Tel Aviv University, is the Austria Chair of the Archeology of the Land of Israel in the Biblical Period and Founder and Director of Ancient Israel Studies for MA and doctoral students.

He has been directing the excavation delegation at Tel Azka since 2010, and since 2018 he has also been heading the excavations at the temple which was discovered at Tel Motza and which dates back to the biblical period.

Prof. Lipschits’ works focus on the “Age of Empires” – the period of the rule of Assyria, Egypt, Babylon and Persia – and its far-reaching effects on the southern Levant in general, and Judea in particular. One of the great contributions of Prof. Lipschits was the recognition that contrary to the accepted chronological conception, the archaeology and history of the Levant in most of the first millennium BCE were shaped by the presence and rule of the great empires.

Through a series of books and articles he has illuminated how the destruction of Jerusalem and the First Temple did not lead to a period of complete exile of the land (“the myth of the empty land”), and that the period of “Return to Zion” is also largely a reflection of “the myth of mass return”.

“Striving for Excellence in the Archaeological and Historical Research of the Land of Israel”

In addition to his many publications, which became important cornerstones for the study of this period, another “building block” laid by Prof. Lipschits is an innovative study of Judean traditions within administration and economy, and especially when it concerns imprints on the handles of jars, a practice which was introduced in the late eighth century and continued into the middle of the second century BCE, during the entire period of the rule of the empires in Judea. These studies demonstrate the continuity of the administration and economy in Judea during the days of the First and Second Temples, before and after the destruction of Jerusalem, during the 600 years between the reign of Ahaz and Hezekiah until the establishment of the Hasmonean dynasty.

“This is a great honor for me personally, and of course for all of us in the Department and Institute of Archaeology, at the Faculty of Humanities and Tel Aviv University, my academic home since the beginning of my studies,” said Prof. Oded Lipschits.

“This is an important and significant award for striving for excellence in the archaeological and historical research of the Land of Israel, and for many years of hard work and fruitful cooperation with friends and colleagues here at TAU and at other universities and Israel and around the world. I would like to thank the award committee for choosing me, and of course my friends and colleagues, my wife Yael and our four children, for the love and support throughout the years that I’ve been engaged in excavations, research and writing.”

Microplastics Increase Toxicity of Organic Pollutants by a Factor of 10

May cause severe damage to our health.

Microplastics are tiny fragments of plastic that are found almost everywhere: in wells, soil, food products, water bottles, and even in glaciers at the North Pole. A new study by Tel Aviv University researchers found that in a marine environment, microplastics encounter environmental pollutants that attach to their surface and increase their toxicity by a factor of 10, which may cause severe harm to the environment and human health.

The study was conducted by Dr. Ines Zucker of the School of Mechanical Engineering and the Porter School of the Environment and Earth Sciences at Tel Aviv University, together with Ph. D. student Andrey Eitan Rubin. The study was recently published in the prestigious journal Chemosphere.

‘Magnets’ for Environmental Pollutants

In the study, the researchers examined the entire process that the microplastic undergoes, from the interactions it has with environmental pollutants to the release of the pollutants and the creation of increased toxicity.

The researchers found that adsorption of those organic pollutants to the microplastics increases toxicity by a factor of 10 and may also cause severe impact on humans who are exposed to contaminated food and drink.

“In this study we showed that even very low concentrations of environmental pollutants, which are non-toxic to humans, once adsorb to the microplastic result in significant increase in toxicity,” says Dr. Zucker. “This is because microplastics are a kind of ‘magnet’ for environmental pollutants, concentrating them on its surfaces, ‘ferrying’ them through our digestive tract, and releasing them in a concentrated form in certain areas – thus causing increased toxicity.”

 

From left to right: Ph. D. student Andrey Eitan Rubin, Dr. Ines Zucker and Dr. Amit Kumar Sarkar

Not Just a Remote Problem

Ph. D. student Andrey Eitan Rubin adds: “For the first time we are presenting a complete ‘life cycle’ of microplastics: from the moment of their release into the environment, through the adsorption of environmental pollutants and up to their joint toxicity in humans.”

“The amount of waste dumped into the ocean every year is enormous – the best known example is the plastic island in the Pacific Ocean, which has an area 80 times larger than the State of Israel.”

This is not just a remote problem. The researchers’ preliminary monitoring data show that Israel’s shores are among the most polluted with microplastic waste. “Each of the microplastic particles secreted in these areas has tremendous potential for harm, as they serve as an effective and stable platform for any pollutant that they may encounter on their way to the human body,” warns Rubin.

                                                                                                                   “This is another painful reminder of the dire consequences of polluting the marine and terrestrial environment with hazardous industrial waste, which has unfortunately been saturated with plastic in recent decades. The dangers are not theoretical but are more tangible than ever. Although there is a great deal of awareness of this problem, the preventive measures in the field are still far from imprinting a significant mark,” concludes Dr. Zucker.

Can Higher Temperatures Accelerate the Rate of Evolution?

TAU researchers use worms to demonstrate that epigenetic inheritance of sexual attractiveness can impact the evolutionary process.

Can environment impact genetic diversity in face of changing conditions, such as higher temperatures (think global warming)? Researchers at Tel Aviv University have discovered that epigenetic inheritance – inheritance which does not involving changes in the DNA sequence – can affect the genetic composition of the population for many generations. The environment can actually impact genetic diversity under certain conditions and the researchers believe that it’s a way for the environment to adjust genetic diversity.

Worms Get It from their Mama’s Mama’s Mama’s… 

Females of the worm species C. elegans produce both egg cells (or “oocytes”) and sperm, and can self-reproduce (hence are considered hermaphrodites). They produce their sperm in a limited amount, only when they are young. At the same time, there are also rare C. elegans males in the population that can provide more sperm to the female worms through mating.

In normal conditions, the female hermaphrodites secrete pheromones to attract males for mating only when they grow old and run out of their own sperm (at this point mating becomes the only way for them to continue and reproduce). Therefore, when the hermaphrodite is young, and still has sperm, she can choose whether to mix her genes by sexually reproducing with a male, or not.

In the new study, exposure to elevated temperatures was found to encourage more hermaphrodites to mate, and this trait was also preserved in the offspring for multiple generations, even though they were raised in comfortable temperatures and did not experience the stress from the increased heat.

The study, which was published today in the journal Development Cell, was led by Prof. Oded Rechavi and Dr. Itai Toker, as well as Dr. Itamar Lev and MD-PhD student Dr. Yael Mor, who did their doctorates under Prof. Rechavi’s supervision at the School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, and the Sagol School of Neuroscience. The study was conducted in collaboration with the Rockefeller University in New York.

Securing Genetic Diversity

Why did the higher temperatures result in the C. elegans worms becoming more attractive, mating more with males? Dr. Itai Toker explains that “The heat conditions we created disrupted the inheritance of small RNA molecules that control the expression of genes in the sperm, so the worm’s sperm was not able to fertilize the egg with the efficiency that it normally would. The worm sensed that the sperm it produced was partially damaged, and therefore began to secrete the pheromone and attract males at an earlier stage, while it was still young.”

If that wasn’t enough, Dr. Rechavi points out that the really fascinating finding was that the trait of enhanced attractiveness was then passed on for many generations to offspring who did not experience the conditions of higher temperatures. The researchers found that heritable small RNA molecules, not changes in the DNA, transmitted the enhanced attractiveness between generations. Small RNAs control gene expression through a mechanism known as RNA interference or gene silencing – they can destroy mRNA molecules and thus prevent specific genes from functioning in a given time at a given tissue or cell.

Dr. Itai Toker adds that, “In the past, we discovered a mechanism that passes on small RNA molecules to future generations, in parallel and in a different way from the usual DNA-based inheritance mechanism. This enables the transmission of certain traits transgenerationally. By specifically inhibiting the mechanism of small RNA inheritance, we demonstrated that the inheritance of increased attractiveness depends on the transmission of small RNAs that control sperm activity.”

Mating, as opposed to fertilizing themselves, comes at a price for the female, hermaphroditic worms, as it allows them to pass on only half of their genome to the next generation. This “dilution” of the parents’ genetic contribution is a heavy price to pay. The benefit, however, is that it increases genetic diversity. By conducting lab evolution experiments we indeed discovered that it may be a useful adaptive strategy.

The researchers later experimented with evolution: They tracked the offspring of mothers who passed on the trait of attractiveness to males with the help of small RNAs, and allowed them to compete for males, for many generations, against normal offspring from a control group. The researhers observed how the inheritance of sexual attractiveness led to more mating in these competitive conditions, and that as a result the attractive offspring were able to spread their genes in the population more successfully.

 

Prof. Oded Rechavi (photo: Yehonatan Zur Duvdevani)

Environment’s Response to Global Warming?

In general, living things respond to their environment by changing their gene expression, without changing the genes themselves. The understanding that some of the epigenetic information, including information about the parents’ responses to environmental challenges, is encoded in small RNA molecules and can be passed down from generation to generation has revolutionized our understanding of heredity, challenging the dogma that has dominated evolution for a century or more. However, to date researchers have not been able to find a way in which epigenetic inheritance can affect the genetic sequence (DNA) itself.

“Epigenetics in general, and the inheritance of parental responses facilitated by small RNAs in particular, is a new field that is garnering a lot of attention,” says Dr. Lev. “We have now proven that the environment can change not only the expression of genes, but, indirectly, also genetic heredity, and for many generations.”

“Generally, epigenetic inheritance of small RNA molecules is a transient matter: the organism is exposed to a particular environment, and preserves the epigenetic information for 3-5 generations. In contrast, evolutionary change occurs over hundreds and thousands of generations. We looked for a link between epigenetics and genetics and found that a change in the environment, that is relevant to global warming, induces transgenerational secretion of a pheromone to attract males, and thus affects the evolution of the worms’ genome.”

Dr. Mor adds, “We think that it’s a way for the environment to adjust genetic diversity. After all, evolution requires variability and selection. The classical theory is that the environment can influence selection, but cannot affect variability, which is created randomly as a result of mutations. We found that the environment can actually impact genetic diversity under certain conditions.”

Why do Locusts Form Destructive Swarms?

TAU researchers may have the answer.

Locust swarms that ruin all crops in their path have been a major cause of famine from Biblical times to the present. Over the last three years, large parts of Africa, India and Pakistan have been hard-hit by locust outbreaks, and climate change is expected to exacerbate the problem even further.

A new multidisciplinary study by experts in fields as varied as insect behavior and physiology, microbiology, and computational models of evolution, has led to valuable insights concerning locust swarming: “Locust swarms form when individual locusts, usually solitary and harmless, aggregate and begin to migrate. However, the causes for this behavior remain largely unknown, and an effective solution is yet to be found,” explains Prof. Amir Ayali from the School of Zoology at TAU’s George S. Wise Faculty of Life Sciences.

Following recent studies, indicating that microbiomes can influence their hosts’ social behavior, the researchers hypothesized that locusts’ microbiomes may play a role in changing the behavior of their hosts to become more ‘sociable’. The study was published in Environmental Microbiology.

The Bacteria that Fly with Borrowed Wings 

To test their hypothesis, the researchers examined the gut microbiomes of locusts reared in the laboratory, and found a profound change when individuals reared in solitary conditions joined a large group of about 200 locusts.

Omer Lavy: “The most significant change was observed in bacteria called Weissella, almost completely absent from the microbiome of solitary locusts, which became dominant soon after their hosts joined the group.”

The researchers then developed a mathematical model that was used for analyzing the conditions under which induction of locust aggregation produces significant evolutionary advantages for Weissella, allowing these bacteria to spread to numerous other hosts. Based on these results, the researchers hypothesize that Weissella bacteria may play an important role in the locust aggregation behavior. In other words, the bacteria may in some way encourage their hosts to change their behavior and become more ‘sociable’.

Prof. Ayali concludes:  “Our study contributes to the understanding of locust swarming – a leading cause of famine from antiquity to the present. Our findings do not prove unequivocally that the Weissella bacteria are responsible for the swarming and migration of locusts. The results do, however, suggest a high probability that the bacteria play an important role in inducing this behavior – a new hypothesis never previously proposed. We hope that this new understanding will drive the development of new means for combating locust outbreaks – still a major threat to countless people, animals, and plants all over the globe.”

The new study was based on a multidisciplinary collaboration of experts in fields as varied as insect behavior and physiology, microbiology, and computational models of evolution. The project was led by Prof. Amir Ayali and PhD student Omer Lavy from the School of Zoology at TAU’s George S. Wise Faculty of Life Sciences. Participants included Prof. Lilach Hadany, Ohad Lewin-Epstein and Yonatan Bendett from the School of Plant Sciences and Food Security and Prof. Uri Gophna from The Shmunis School of Biomedicine and Cancer Research, all of the Wise Faculty. They were joined by Dr. Eran Gefen from the University of Haifa-Oranim. 

Discovery May Enable Early Diagnosis of Alzheimer’s

Can your sleep predict your chance of developing the disease?

A new study at Tel Aviv University revealed abnormal brain activity that precedes the onset of Alzheimer’s first symptoms by many years: increased activity in the hippocampus, a region of the brain which plays a key role in memory processes, during anesthesia and sleep, resulting from failure in the mechanism that stabilizes the neural network. The researchers believe that the discovery of this abnormal activity during specific brain states may enable early diagnosis of Alzheimer’s, eventually leading to a more effective treatment of a disease that still lacks effective therapies.

The study was published in the prestigious scientific journal Cell Reports, and led by Prof. Inna Slutsky and doctoral students Daniel Zarhin and Refaela Atsmon from the Sackler Faculty of Medicine and the Sagol School of Neuroscience at Tel Aviv University.

According to Prof. Inna Slutsky, innovative imaging technologies developed in recent years have revealed that amyloid deposits, a hallmark of Alzheimer’s disease pathology, are formed in patients’ brains as early as 10-20 years before the onset of typical symptoms such as memory impairment and cognitive decline. Unfortunately, most efforts to treat Alzheimer’s disease have failed. She believes that if we could detect the disease at the pre-symptomatic stage, and keep it in a dormant phase for many years, this would be a tremendous achievement in the field. Identifying a signature of aberrant brain activity in the pre-symptomatic stage of Alzheimer’s and understanding the mechanisms underlying its development she says may be a key to effective treatment.

Additional participants in the study include: Dr. Antonella Ruggiero, Halit Baeloha, Shiri Shoob, Oded Scharf, Leore Heim, Nadav Buchbinder, Ortal Shinikamin, Dr. Ilana Shapira, Dr. Boaz Styr, and Dr. Gabriella Braun, all from Prof. Slutsky’s laboratory. Collaborations with the laboratory teams of Prof. Yaniv Ziv of the Weizmann Institute, and Prof. Yuval Nir of TAU were essential for the project. Prof. Tamar Geiger, Dr. Michal Harel, and Dr. Anton Sheinin of Tel Aviv University, as well as researchers from Japan, also contributed to the study.

The researchers used animal models for Alzheimer’s, focusing on the hippocampal region of the brain, which is known to be impaired in Alzheimer’s patients. At first, they measured cell activity in the hippocampus when the model animal was awake and active. For this, they used advanced methods that measure brain activity at a resolution of single neurons.

High Neuronal Activity – Also During Sleep

“It is known that neuronal activity of the hippocampus decreases during sleep in healthy animals,” explains Refaela Atsmon. However, when she examined model animals in early stages of Alzheimer’s, she found that their hippocampal activity remained high even during sleep. This is due to a failure in the physiological regulation, which she says has never before been observed in the context of Alzheimer’s disease.

Daniel Zarhin found similar dysregulation in model animals under anesthesia: neuronal activity did not decline, the neurons operated in a manner that was too synchronized, and a pathological electrical pattern was formed, similar to ‘quiet’ seizures in epileptic patients.

The researchers found that brain states that block responses to the environment – such as sleep and anesthesia – expose abnormal activity which remains hidden when the animal is awake, and this happens before the symptoms of Alzheimer’s disease are observed.

Prof. Slutsky’s explains that even though this abnormal activity can be detected during sleep, it is much more frequent under anesthesia. Therefore, she says, it would be important to test whether short anesthesia can be used for early diagnosis of Alzheimer’s disease.

Defective Stabilizing Mechanisms

The researchers proceeded to ask what causes the abnormality. To this end, they relied on findings from previous studies from Prof. Slutsky’s laboratory and other researchers on homeostasis of neural networks: each neural circuit has a set point of activity, maintained by numerous stabilizing mechanisms. These mechanisms are activated when the balance is disturbed, restoring neuronal activity to its original set point.  

Is a disruption of these mechanisms the main cause of deviant brain activity during sleep and anesthesia in Alzheimer’s disease animal models? To test this, Dr. Antonella Ruggiero examined the effect of various anesthetics on neurons grown on a chip. She found that they lower the set point of neuronal activity. While in healthy neural networks this activity remained low over time, in neural networks expressing genetic Alzheimer’s mutations, the lowered set point recovered quickly, despite the presence of anesthetics.

The researchers now sought to examine a potential drug for the impaired regulatory mechanism. According to Prof. Slutsky, the instability in neuronal activity found in the study is known from epilepsy. In a previous study Prof. Slutsky’s team discovered that an existing drug for multiple sclerosis may help epilepsy patients by activating a homeostatic mechanism that lowers the set point of neural activity. Doctoral student Shiri Shoob examined the effect of the drug on hippocampal activity in the animal model for Alzheimer’s and found that also in this case the drug stabilizes activity and reduces pathological activity observed during anesthesia.

Proceeding Towards Clinical Trials

“The results of our study may help early diagnosis of Alzheimer’s, and even provide a solution for instability of neuronal activity in Alzheimer’s disease,” says Prof. Slutsky. Firstly, we discovered that anesthesia and sleep states expose pathological brain activity in the early stages of Alzheimer’s disease, before the onset of cognitive decline. We also proposed the cause of the pathological activity – failure of a very basic homeostatic mechanism that stabilizes electrical activity in brain circuits. Lastly, we showed that a known medication for multiple sclerosis suppresses this type of anesthesia-induced aberrant brain activity,” she concludes.

The researchers now plan to collaborate with medical centers in Israel and worldwide to test whether the mechanisms discovered in animal models can also be identified in patients with early-stage Alzheimer’s disease. For this purpose, they propose to incorporate EEG monitoring into surgical procedures, to measure brain activity of patients under anesthesia. They hope that their findings will promote early diagnosis and drug development for the most common form of late-onset dementia.

Featured image: The Research Team (from left to right): Prof. Inna Slutsky, Daniel Zarhin and Refaela Atsmon (Photo: Dr. Tal Laviv)

Finding the Optimal Location for the Tribal Bonfire

Early humans’ placement of cave hearths ensured maximum benefit and minimum smoke exposure.

In a first-of-its kind study, the researchers developed a software-based smoke dispersal simulation model and applied it to a known prehistoric site. They discovered that the early humans who occupied the cave had placed their hearth at the optimal location – enabling maximum utilization of the fire for their activities and needs while exposing them to a minimal amount of smoke. The groundbreaking study provides evidence for high cognitive abilities in early humans who lived 170,000 years ago.

The study was led by PhD student Yafit Kedar, and Prof. Ran Barkai from the Jacob M. Alkow Department of Archaeology and Ancient Near Eastern Cultures at The Lester and Sally Entin Faculty of Humanities, together with Dr. Gil Kedar. The paper was published in Scientific Reports.

In the Back of the Cave? Or towards the front?

The use of fire by early humans has been widely debated by researchers for many years, regarding questions such as: At what point in their evolution did humans learn how to control fire and ignite it at will? When did they begin to use it on a daily basis? Did they use the inner space of the cave efficiently in relation to the fire? While all researchers agree that modern humans were capable of all these things, the dispute continues about the skills and abilities of earlier types of humans. One focal issue in the debate is the location of hearths in caves occupied by early humans for long periods of time.

“Multilayered hearths have been found in many caves, indicating that fires had been lit at the same spot over many years,” says Yafit Kedar. “In previous studies, using a software-based model of air circulation in caves, along with a simulator of smoke dispersal in a closed space, we found that the optimal location for minimal smoke exposure in the winter was at the back of the cave. The least favorable location was the cave’s entrance.”

Humans Need Balance

In the current study, the researchers applied their smoke dispersal model to an extensively studied prehistoric site – the Lazaret Cave in southeastern France, inhabited by early humans around 170-150 thousand years ago. “According to our model, based on previous studies, placing the hearth at the back of the cave would have reduced smoke density to a minimum, allowing the smoke to circulate out of the cave right next to the ceiling,” explains Kedar. “However, in the archaeological layers we examined, the hearth was located at the center of the cave.”

The team tried to understand why the occupants had chosen this spot, and whether smoke dispersal had been a significant consideration in the cave’s spatial division into activity areas. The researchers performed a range of smoke dispersal simulations for 16 hypothetical hearth locations inside the 290sqm cave. To understand the health implications of smoke exposure, measurements were compared with the average smoke exposure recommendations of the World Health Organization.

Excavations at the Lazaret Cave, France (photo: De Lumley, M. A. néandertalisation (pp. 664-p). CNRS éditions. (2018Les restes humains fossiles de la grotte du Lazaret. Nice, Alpes-Maritimes, France. Des Homo erectus européens évolués en voie de)

The researchers found that the average smoke density, based on measuring the number of particles per spatial unit, is in fact minimal when the hearth is located at the back of the cave – just as their model had predicted. However, Yafit Kedar and Dr. Gil Kedar explain that they also discovered that “In this situation, the area with low smoke density, most suitable for prolonged activity, is relatively distant from the hearth itself. Early humans needed a balance – a hearth close to which they could work, cook, eat, sleep, get together, warm themselves, etc. while exposed to a minimum amount of smoke. Ultimately, when all needs are taken into consideration – daily activities vs. the damages of smoke exposure – the occupants placed their hearth at the optimal spot in the cave.”

Our Ancestors Nailed It

The study identified a 25sqm area in the cave which would be optimal for locating the hearth in order to enjoy its benefits while avoiding too much exposure to smoke. Astonishingly, in the several strata examined in this study, the early humans actually did place their hearth within this area. 

“Our study shows that early humans were able, with no sensors or simulators, to choose the perfect location for their hearth and manage the cave’s space as early as 170,000 years ago – long before the advent of modern humans in Europe. This ability reflects ingenuity, experience, and planned action, as well as awareness of the health damage caused by smoke exposure. In addition, the simulation model we developed can assist archaeologists excavating new sites, enabling them to look for hearths and activity areas at their optimal locations,” concludes Prof. Barkai.

In upcoming studies, the researchers intend to use their model to investigate the influence of different fuels on smoke dispersal, use of the cave with an active hearth at different times of year, use of several hearths simultaneously, and more.

TAU Breakthrough Offers New Hope to Help People With Paralysis Walk Again

Researchers successfully engineer world’s first 3D human spinal cord tissue transplant.

Paralysis from spinal injury has long remained untreatable. Could scientific developments get people affected on their feet again sooner than imagined? In a worldwide first, Tel Aviv University researchers have engineered 3D human spinal cord tissues and implanted them in a lab model with long-term chronic paralysis, demonstrating high rates of success in restoring walking abilities. Now, the researchers are preparing for the next stage of the study, clinical trials in human patients. They hope that within a few years the engineered tissues will be implanted in paralyzed individuals enabling them to stand up and walk again.

How to Reverse Spinal Injury?

“Our technology is based on taking a small biopsy of belly fat tissue from the patient,” explains Prof. Tal Dvir who’s research team led the study. “This tissue, like all tissues in our body, consists of cells together with an extracellular matrix comprising substances like collagens and sugars. After separating the cells from the extracellular matrix we used genetic engineering to reprogram the cells, reverting them to a state that resembles embryonic stem cells – namely cells capable of becoming any type of cell in the body.”

 

Petri dish with tissue samples (Photo: Sagol Center for Regenerative Biotechnology)

From the extracellular matrix the researchers produced a personalized hydrogel, that would evoke no immune response or rejection after implantation. They then encapsulated the stem cells in the hydrogel, and in a process that mimics the embryonic development of the spinal cord, turned the cells into 3D implants of neuronal networks containing motor neurons.

 

Neural net (Photo: Sagol Center for Regenerative Biotechnology)

The human spinal cord implants were then implanted in two different groups of lab models: those who had only recently been paralyzed (the acute model) and those who had been paralyzed for a long time (the chronic model) – equivalent to one year in human terms. Following the implantation, 100% of the lab models with acute paralysis and 80% of those with chronic paralysis regained their ability to walk.

The groundbreaking study was led by Prof. Tal Dvir’s research team at the Sagol Center for Regenerative Biotechnology, The Shmunis School of Biomedicine and Cancer Research, and the Department of Biomedical Engineering at Tel Aviv University. The team at Prof. Dvir’s lab includes PhD student Lior Wertheim, Dr. Reuven Edri, and Dr. Yona Goldshmit.  Other contributors included Prof. Irit Gat-Viks from the Shmunis School of Biomedicine and Cancer Research, Prof. Yaniv Assaf from the Sagol School of Neuroscience, and Dr. Angela Ruban from The Stanley Steyer School of Health Professions at the Sackler Faculty of Medicine, all at Tel Aviv University. The results of the study were published in the prestigious scientific journal Advanced Science.

Visualization of the next stage of the research – human spinal cord implants for treating paralysis (Photo: Sagol Center for Regenerative Biotechnology)

Getting Patients Suffering from Paralysis Back on Their Feet

Encouragingly, the model animals underwent a rapid rehabilitation process, at the end of which they could walk quite well. This is the first instance in the world in which implanted engineered human tissues have generated recovery in an animal model for long-term chronic paralysis – which is the most relevant model for paralysis treatments in humans.

“Our goal is to produce personalized spinal cord implants for every paralyzed person, enabling regeneration of the damaged tissue with no risk of rejection,” says Prof. Dvir.

Based on the revolutionary organ engineering technology developed at Prof. Dvir’s lab, he teamed up with industry partners to establish Matricelf (matricelf.com) in 2019. The company applies Prof. Dvir’s approach in the aims of making spinal cord implant treatments commercially available for persons suffering from paralysis.

Prof. Dvir, head of Sagol Center for Regenerative Biotechnology, concludes: “We hope to reach the stage of clinical trials in humans within the next few years, and ultimately get these patients back on their feet. The company’s preclinical program has already been discussed with the FDA. Since we are proposing an advanced technology in regenerative medicine, and since at present there is no alternative for paralyzed patients, we have good reason to expect relatively rapid approval of our technology.” 

 

The research team (from left to right): Dr. Yona Goldshmit, Prof. Tal Dvir and Lior Wertheim  (Photo: Sagol Center for Regenerative Biotechnology)

 

And Let There Be Light

Efforts by TAU’s Clinical Law Program will help keep electricity running for those who are struggling to pay utility bills.

The recent drop in temperature in Israel has led to a significant increase in electricity consumption. But what about those who simply cannot afford basic necessities?

A petition jointly filed by Tel Aviv University’s Human Rights Clinic at The Buchmann Faculty of Law will help keep the electricity on for some of Israel’s most underprivileged populations. In response to the appeal, Israel’s High Court ruled that electricity must not be cut off for citizens who prove a difficult economic or medical condition, effective immediately. We spoke with attorney Adi Nir Binyamini from TAU’s Human Rights Clinic, one of the lawyers who handled the case. 

Electricity – A Fundamental Right?

In a precedent-setting decision, the High Court ruled on January 20 that access to electricity should be considered a fundamental right and that the Electricity Authority must, within six months, amend the criteria for power outages as a means of collecting debt. Meanwhile, the new ruling assists electricity consumers who find themselves in serious economic or medical distress, and ensure that they will not be left in the dark or the cold and without other basic needs.

The ruling came in response to a petition filed by the Association for Civil Rights in Israel (ACRI) in collaboration with the Human Rights Clinic at Tel Aviv University, Physicians for Human Rights and the Israel Union of Social Workers against the Electricity Authority, the Israel Electric Corp. and Energy Minister. It was filed on behalf of several poor families whose electricity had been cut off for non-payment.

The High Court of Justice ruled that, until the Electricity Authority establishes appropriate criteria and procedures (within six months from the time of the ruling), it must enable consumers facing power cuts from lack of payment to demonstrate whether they are suffering financial or health problems that justify their continued access to electric power. The court said the Electricity Authority must conduct a hearing prior to cutting a customer’s power. It gave the national electricity provider six months to revise its procedures and ordered it to pay the petitioners 40,000 NIS ($12,800) in expenses, to be divided among them. “This is a dramatic change from the previous situation, when it was possible to cut off people’s electricity access due to the accumulation of debt, except for very few exceptions,” explains Att. Nir Binyamini.

 

From the second hearing in Higher Court, on October 28, 2021 (from left to right): Gil Gan Mor (ACRI), Hicham Chabaita and Att. Adi Nir Binyamini from TAU’s Human Rights Clinic and Att. Mascit Bendel (ACRI) 

The Beginning of a New Era

Binyamini, who has dealt with electricity litigation for several years now, says, “I feel personal and professional satisfaction that on the coldest day of the year, when people were left without heating, the High Court accepted our position and ruled not to cut off people’s electricity due to poverty and that debt must instead be collected by more moderate means.”


 When asked how the Clinic got involved with the project, Binyamini explains that TAU’s Humans Rights Clinic was previously part of a legal battle over water disconnections for consumers unable to pay their water bill. “After that was successfully completed, we took on the subject of electricity and have been working on it continuously for the past eight years. The Clinic represented and handled the two petitions that were submitted to the Israeli High Court, and over the years we have dealt with hundreds of individual cases of people being cut off from electricity. We have also been guiding and assisting social workers with individual cases.”

She adds that a large number of students from the Clinic have worked on the case over the years, and stresses that such practical experience is an extremely valuable component of legal education.

Upon the court’s ruling, Binyamini along with Att. Maskit Bendel of the ACRI issued a statement, saying: “We hope that the ruling, which opened with the words ‘and let there be light,’ heralds the beginning of new era when it comes to protecting weak populations from having their electricity cut off.” 

 

Attorney-at-law Adi Nir Binyamini from Tel Aviv University’s Human Rights Clinic (photo: Tomer Jacobson) 

More than 16,000 participants on TAU’s Open Day 2022

Online format of the event has increased number of participants from all across Israel.

This years TAU Open Day took place on February 1-2, 2022 and comprised 165 Zoom meetings where potential incoming students could learn about various study programs for B.A.s and more advanced degrees, take advantage of personal counselling sessions, receive tips on how to choose a suitable field of study for oneself and more.

More than 16,000 potential future TAU students joined the online Zoom sessions where they met and interacted with the academic and administrative staff, current students and graduates of their field of interest.

  This year, there was a particularly strong interest for TAU’s new undergraduate program in Data Science, the undergraduate program in hi-tech sciences, and the innovative Master Trek tracks in Engineering. Many were also interested, probably due to the corona, in the Master of Science in Epidemiology and Preventive Medicine (M.Sc.).

A total of 50 ultra-Orthodox Jews candidates attended a meeting on graduate studies within the framework called Trailblazers: The Program for Integrating the Ultra-Orthodox into Tel Aviv University.

Also very popular were sessions offering tips for how to choose a field of study; alternative admission routes to the regular entrance exam and how one may improve one’s chances of admission by taking online courses.

  The Open Day marked the opening of the registration season for the academic year 2022/23.   

Learn about our academic units and programs here >>

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]