Skip to main content

Author: AUFTAU

TAU and Goethe University Establish Joint Center for Interfaith Studies

First-of-its-kind academic collaboration between Israel and Germany.

Academic collaboration between Israel and Germany is growing, and for the first time, Tel Aviv University in Israel and Goethe University in Frankfurt will establish a joint center. With a focus on interfaith studies, the center will promote research on religion, in particular the monotheistic faiths – a field in which both institutions specialize. The two universities will conduct joint research, hold academic conferences, and train students and researchers in this field.

The agreement for launching the new center was signed during a dedicated “Germany Week” organized at TAU by TAU International and the Student Union of Tel Aviv University, the first is a series of international events led by TAU International and the TAU Student Union, promoting internationality and a global campus by focusing on the cultures of different countries and bringing them to the TAU community.

The signing was attended by the German Ambassador to Israel Susanne Wasum-Rainer, TAU President Prof. Ariel Porat, and the President of Goethe University, Prof. Enrico Schleiff.

“Tel Aviv university has a wide network of collaboration with German universities, more than with any other country in Europe,” says Prof. Milette Shamir, TAU’s VP in charge of international academic collaboration. 

“This collaboration includes hundreds of joint research projects as well as hundreds of German students who come to our campus each year. The joint center expands this collaboration in an important new direction and tightens our existing partnership with Goethe University Frankfurt, one of the leading universities in Germany. We hope that in the near future the two universities will expand collaboration to several other areas of common strength.”

 

German TAU Students celebrating the International “Germany Week” on Tel Aviv University campus (Photo: Raphael Ben-Menashe)

The Start of an Even Closer Cooperation

Prof. Menachem Fisch, who heads the initiative at TAU says, “I am thrilled to be part of the establishment of a unique, first-of-its-kind center for the study of the monotheistic faiths and their mutual development. This is a worthy initiative, and one more building block in the academic collaboration between the two countries.”

Prof. Enrico Schleiff, President of Goethe University notes that, ”What we are agreeing upon today is, as far as I am aware, unprecedented – at least in the humanities in Germany.” 

“It is not merely a formal cooperation between a German and an Israeli university, but rather the development of a highly visible, joint institutionalized international research center. The center is cross-departmental on both sides and working in an area of study that is most relevant to the German and the Israeli society alike: the history of and the present challenges in religious diversity, difference and conflict in pluralistic societies. It will focus on questions regarding inter-religious dialogue, religious fundamentalism and conflict, but also on the rich cultural heritage and the potential inherent in religious traditions. This center is the start of an even closer cooperation.”

Susanne Wasum-Rainer, Germany’s Ambassador to Israel says, “Academic exchange and cooperation is not only a constitutive pillar of German-Israeli relations. It is also a contribution to strengthening research and scientific progress as a global endeavor, in science as well as in the humanities. By declaring their will to establish a joint Center for the Study of Religious and Interreligious Dynamics, the Goethe University Frankfurt am Main and the Tel Aviv University address one of the urgent questions of our time, the role of religious communities in a changing and conflictual world.

“This MOU marks a new milestone in the special relationship between the two universities and is also another bridge of understanding between Frankfurt and Tel Aviv. The new center will for sure contribute to a better inter-religious dialogue from different angles and perspectives,” concludes Uwe Becker, President of the German Friends Association of Tel Aviv University

Parent Smartphone Use Could Harm Child Development

Mothers devote only 25% of their attention to toddlers when distracted, consequences can be far-reaching.

A new study from Tel Aviv University found that mothers devote only 25% of their attention to their toddlers while using smartphones, a practice which may impair child development. The researchers believe the findings are applicable to fathers as well.

To conduct the study, researchers monitored dozens of mothers who were asked to perform three tasks alongside their toddlers, aged two to three: Browse a specific Facebook page and like videos and articles that interest them; read printed magazines and mark articles that interest them; and finally, play with the child while the smartphone and magazines were outside the room (uninterrupted free play).

The goal was to simulate situations in real life where the mother has to take care of her child, while at the same time devoting some of her attention to her smartphone. To encourage natural behavior, the mothers were unaware of the purpose of the experiment when browsing a smartphone or reading a printed magazine compared to periods of uninterrupted free play.

The results of the new study, which was led by Dr. Katy Borodkin of the Department of Communication Disorders at The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine of Tel Aviv University, were published in the top-tier Journal of Child Development.

When Mom Reads a Really Good Post

“The mothers talked up to four times less with their children while they were on their smartphones,” said Dr. Borodkin. Not only did they exchange fewer conversational turns with the toddler, the quality of the interactions was also poorer, as the mothers provided less immediate and content-tailored responses, and more often ignored explicit child bids. “Even when they were able to respond while browsing Facebook, the quality of the response was reduced – the mothers kept their responsiveness to a bare minimum to avoid a complete breakdown in communication with the toddler.”

While the researchers did not find that one medium distracted the mothers more than the other between smartphones and magazines, Borodkin noted that: “It is clear that we use smartphones much more than any other media, so they pose a significant developmental threat.

While the study focused on the mothers, the researchers believe the findings characterize communication interferences between fathers and their toddlers as well, since the smartphone usage patterns are similar between men and women.

WATCH: Dr. Katy Borodkin explains how extensive use of smartphones by parents might damage toddlers’ development

Parents, Put Your Phones Away! 

As the mothers performed the tasks, the researchers assessed three components of mother-child interaction: They first examined maternal linguistic input, the spoken content that the mother conveys to the child, regarded as an important predictor of a child’s speech development. Previous studies revealed that reduced linguistic input leads to decreased vocabulary in children, a shortcoming that may extend to adulthood.

Next, the researchers examined how interactive the discourse was. Known as “conversational turns,” the back-and-forth discourse between parent and child is a predictor of language and social development, as the child learns that he or she has something to contribute to the interaction as well as the basic social norms of social interactions.

Finally, maternal responsiveness was examined through the extent the mother responded to their child’s speech. This was measured by the immediacy of the response and its contingency on what the child said. For example, when the child says “look, a truck”, there is no comparison between a response such as “yes, that’s great” and a response such as “correct, this is a red truck, like the one we saw yesterday”. This measure is the basis for almost every aspect of child development: linguistic, social, emotional, and cognitive.

“We currently have no evidence suggesting an actual effect on child development related to the parental use of smartphones, as this is a relatively new phenomenon. However, our findings indicate an adverse impact on the foundation of child development. The consequences of inadequate mother-child interaction can be far-reaching.”

Breakthrough TAU Discovery Key to Reversing ALS

Findings may lead to ways to delay, or even roll back, the course of the fatal disease in its early stages.

A Tel Aviv University-led research team has uncovered a core mechanism that causes ALS and has succeeded in reversing its effects. While the root cause of ALS remains unknown, the discovery reveals the basic biological mechanism that leads to nerve destruction in the early stages of the incurable disease that afflicts an estimated one out of every 400 people. 

To date, there is no effective treatment to prevent or halt disease progression. The average life expectancy of ALS patients is approximately three years from diagnosis. “This discovery can lead to the development of new therapies that could enable nerve cells to heal before irreversible damage occurs in the spinal cord,” said lead investigator Prof. Eran Perlson of the Sackler Faculty of Medicine and the Sagol School of Neuroscience at TAU. 

New Tool for Combating the Disease 

The team discovered that an abnormal buildup of a protein called TDP-43 in neuromuscular junctions, which translate brain signals into physical movements, leads to the degeneration and death of nerve cells (motor neurons). They found that this hinders the activity of mitochondria, which are critical for cells to function.  

The researchers found that this process occurs during the early stages of ALS, initiating damage to motor neurons before patients develop serious symptoms. Eventually, the deterioration of nerve cells in the brain and spinal cord causes ALS patients to gradually lose voluntary muscle ability, leading to complete paralysis including the inability to breathe independently. 

Reversing the Domino Effect  

Using an experimental molecule (originally developed to enhance neural regeneration after injury), the team demonstrated its success in dismantling the toxic protein buildup found in ALS patients. Additionally, in lab models, the researchers showed that this approach actives the process of nerve regeneration, leading to almost complete rehabilitation from the disease. 

Together with Dr. Amir Dori, director of the clinic for neuro-muscular diseases at Sheba Medical Center, and scientists from the US, UK, Germany and France, Perlson and doctoral students Topaz Altman and Ariel Ionescu conducted the study through a series of experiments. The findings were published in the peer-reviewed journal Nature Communication.

Featured image: Prof. Eran Perlson

Experimental Drug Displays Effectiveness in Treating Symptoms of Autism and Alzheimer’s Disease

Has FDA orphan designation for a rare developmental disorder.

An extensive TAU-led international study found that an experimental drug, which has already been awarded orphan drug designation by the FDA for future treatment of a rare development disorder, may also be used for treating a variety of symptoms relating to autism, intellectual disability, and Alzheimer’s disease.

The drug, NAP, was discovered in the lab of Prof. Illana Gozes of the Tel Aviv University Sackler Faculty of Medicine’s Department of Human Molecular Genetics and Biochemistry. The latest study is an important milestone on the way to developing a drug, or drugs, that will help children with autism stemming from genetic mutations, as well as Alzheimer’s patients.

Groundbreaking Technology

In recent years, the FDA has granted the experimental drug with orphan drug designation and pediatric rare disease designation for treatment of a rare developmental disorder called ADNP syndrome, which can cause a variety of symptoms, among them intellectual disability and autism spectrum disorder.

In the current study, a team of researchers led by Prof. Gozes (also from Sagol School of Neuroscience) developed an innovative lab model and found that NAP can be effective in treating a broad spectrum of symptoms of ADNP syndrome, which is caused by mutations in the ADNP gene (essential to cerebral development and protecting cerebral brain cells). Previous studies showed that ADNP syndrome is related to Alzheimer’s disease and certain types of mental disabilities, developmental delays, and autism.

The study, which is the culmination of the MD/PhD student Dr. Gideon Carmon’s doctoral research, was joined by a team of researchers from Prof. Gozes’s lab: Dr. Shlomo Sergovich, Gal Hacohen-Kleiman, Inbar Ben-Horin-Hazak, Dr. Oxana Kapitansky, Alexandra Lubincheva, and Dr. Eliezer Giladi. The team was further joined by Dr. Moran Rubinstein, Prof. Noam Shomron, and Guy Shapira of TAU’s Sackler Faculty of Medicine, and Dr. Metsada Pasmanik Chor of Tel Aviv University’s The George S. Wise Faculty of Life Sciences. Researchers from the Czech Republic, Greece, Germany, and Canada also participated. The article was published in the prestigious journal Biological Psychiatry.

Important Milestone

Prof. Gozes explained that: “NAP, in fact, comprises a short segment of the normal ADNP protein. We previously found that treatment using NAP corrects the function of human nerve cells afflicted with ADNP syndrome in a laboratory test-tube. In this study, we sought to examine the efficacy of NAP in treating various aspects of the syndrome using a model with the most harmful mutation, which allowed us to view brain development and facilitate remedying of behavioral problems.”

The researchers found that mice suffering from ADNP syndrome demonstrated a broad spectrum of symptoms, including increased rates of neonatal death immediately after birth, slowed development and abnormal stride, primarily among females, as well as poor voice communication.

Cerebral examinations demonstrated additional findings: A relatively small number of synapses (the points of contact between nerve cells), impaired electrophysiological activity demonstrating a low potential for normal cerebral arousal, as well as excessive buildup of the Tau protein in young mice, similar to those in the brains of elderly Alzheimer’s disease patients.

Prof. Gozes: “In the past, we have found that NAP corrects impaired functioning of ADNP that has mutated in the nerve cell model in the culture. We now examined its effect in vivo – in animals modeling the syndrome (ADNP mutation). To our amazement and joy, we discovered that treatment using NAP normalizes the functioning of these mice for most of the symptoms indicated above!”

Prof. Gozes summarized: “In this study, we examined the effect of the ADNP gene’s most prevalent mutation in a broad spectrum of aspects and found extensive impairment in physical and cerebral functioning parallel to the symptoms of autism, developmental delay, mental disability, and Alzheimer’s disease in humans. Similarly, we examined the potential use of the NAP drug for treating these diseases, and discovered that it is effective against most of these symptoms in lab models. This study is an important milestone on the way to developing a drug, or drugs, that will help children with autism stemming from genetic mutations, as well as Alzheimer’s patients.”

Ramot – Tel Aviv University Tech Transfer Company filed a number of patent applications to protect the technology and its implementation and, in collaboration with Prof. Gozes, is raising funds to finance further clinical research. Similarly, Ramot is in discussions regarding commercial collaboration with pharmaceutical companies. “We’re excited by this new discovery and believe that this is groundbreaking technology that will remedy a variety of symptoms and disabilities in a broad spectrum of orphan diseases,” said Prof. Keren Primor Cohen, CEO of Ramot.

Featured image: Prof. Illana Gozes

Seaweed – A Promising Defense Against Covid-19

Natural substance from marine algae prevents infection.

The lack of access to Covid-19 vaccines results in the deaths of many people and even accelerates the development of new variants. Researchers from Tel Aviv University, led by Prof. Alexander Golberg of the Porter School of the Environment and Earth Sciences, have found that a substance called ‘ulvan’ extracted from edible marine algae prevents the infection of cells with the coronavirus.

The researchers believe this affordable and natural material may help solve serious problems, such as the spread of the coronavirus in large populations, especially in developing countries with limited access to vaccines. The study is still in its early stages, but the researchers are hopeful that the discovery will be used in the future to develop an accessible and effective drug to prevent coronavirus infection.

Affordable Solutions Needed

Prof. Golberg explains: “It is already clear today that the coronavirus vaccine alone, despite its effectiveness, will not be able to prevent the global spread of the pandemic. As long as the lack of access to vaccines remains unaddressed for billions of people in underprivileged communities, the virus is expected to develop increasingly more variants, which may be resistant to vaccines – and the war against the virus will continue.”

“It is very important to find affordable and accessible solutions to suit even economically weak populations in developing countries. With this aim, our lab tested a substance that could be extracted from a common seaweed. Ulvan is extracted from marine algae called Ulva, an edible ‘sea lettuce’ common in places like Japan, New Zealand and Hawaii,” he adds.

Golberg explains that his lab’s rational for exploring the potential use of ulvan for coronavirus defenses was motivated by previous discoveries of its effectiveness in preventing plant viruses along with some human viruses.

Successful Prevention Against Covid-19

To test their hypothesis, the TAU researchers grew Ulva algae and extracted the ulvan from it before sending samples to the Southern Research Institute in Alabama, which deals with infectious diseases. The US researchers built a lab model to test the activity of the substance produced by Prof. Golberg’s team. The cells were exposed to both the coronavirus and the ulvan. It was found that, in the presence of ulvan, the coronavirus did not infect the cells. As opposed to extracts from other algae tested, the substance demonstrated success in preventing coronavirus infection. 

According to the researchers, “The substance was produced in raw production, meaning it is a mixture of many natural substances, and we must find out which one is responsible for preventing cellular infection. After that, we will have to examine how, if at all, it works in humans.”

The research team consisted of Shai Sheffer, Arthur Rubin and Alexander Chemodanov from Dr. Golberg’s laboratory, Prof. Michael Gozin from the School of Chemistry and the Tel Aviv Universicy Center for Nanoscience and Nanotechnology. They collaborated with researchers from the Hebrew University, the Meir Medical Center in Kfar Saba, and the Southern Research Institute in Alabama, USA. The article was published in the journal PeerJ.

Featured image: Specially designed closed system with photobioreactors for seaweed production at TAU

New Ethical Code for World Research of Ancient DNA

TAU researcher was part of international team of experts who composed ethical standard.

For the first time, an international team of experts, among them TAU anthropologist and paleo-geneticist Dr. Viviane Slon from the Sackler Faculty of Medicine and the Dan David Center for Human Evolution and Biohistory Research, has formulated a globally-applicable ethical code for research of ancient human DNA. The significant increase throughout the last decade in research of ancient DNA extracted from human remains, and its effects on archeology and other fields, created a need to formulate a dedicated ethical standard that will guide researchers in their work.

Sixty-four international researchers from different fields – archeology, anthropology, curatorship, archeo-genetics and paleo-genetics – from 31 different countries, among them TAU anthropologist and paleo-geneticist Dr. Viviane Slon, took part in the formulation of the ethical code. The ethical code was recently published in the prestigious journal Nature.

Interdisciplinary and International Cooperation

Dr. Slon, who is also a member of Tel Aviv University’s Shmunis Family Anthropology Institute, explains that ancient DNA research has unique aspects, which raise the need for ethical regulations. The examination of past ancestry can have social and political implications today, and because ancient DNA research deals with people who once lived, they must be treated respectfully.

The newly-written ethical codes encourage minimal damage to the human remains during research processes, and call for cooperation with stakeholders, including any descendants or local communities as well as fellow researchers in other fields – and to respect their point of view.

Dr. Slon says: “The guidelines proposed here encompass all the different stages of research, from planning, through sampling and sharing of data and results, to communicating with our fellow researchers and with the general public. It is an international project born out of a virtual meeting that took place about a year ago, in which there was a wide consensus regarding the need for ethical regulations in this growing field, and here we have the final product.”

“We hope to increase its impact, and we are working to translate the paper into dozens of languages, including Hebrew. Recently, researchers from the Shmunis Family Anthropology Institute and the Dan David Center for Human Evolution and Biohistory Research led the breakthrough research discovering ancient human remains in the vicinity of the Nesher Ramla factory. Due to the foundational principals  laid  for the expansion of the interdisciplinary cooperation in the world of ancient DNA research, we will now be able to maximize the scientific accomplishments in this field, in Israel and throughout the world.”

Featured image: Dr. Viviane Slon (Photo: Fabrizio Mafessoni)

TAU Ventures Raises $50M to Boost Israeli Startups

Israel’s first university investment arm leverages academic power to enrich startup ecosystem.

Tel Aviv University’s own investment arm, TAU Ventures, recently announced that it has secured $50 million for a new fund to invest in startups, with the potential to top-up to $70 million. According to Prof. Ariel Porat, President of Tel Aviv University, “TAU Ventures provide entrepreneurs with a platform for significant opportunities in innovation and extends the power of academia beyond the campus boundaries.”

TAU is consistently ranked as a top university producing entrepreneurs, its alumni ranked 5th globally and 8th in the world for entrepreneurship. The fund intends to invest in 15 to 25 companies founded by Israeli entrepreneurs, and – as part of TAU Ventures’ mandate – all the companies will be run by at least one TAU alumnus/a or TAU student.

Combining Forces between Academia and Industry

Housed in the Miles S. Nadal Home for Technological Innovation and Entrepreneurship, TAU Ventures invest much more than money in their portfolio companies, creating value for entrepreneurs by offering unique TAU resources, including: 

  • A Global Network – High-quality and sizeable network across the globe
  • Expert Knowledge – Connecting entrepreneurs with relevant sources of knowledge across campus
  • Man Power – In shape of TAU students who are interested in either joining the startups as interns (for which they earn credits for their studies) or as full time workers
  • Free Office Space – In close proximity to the TAU Venture team, who are comfortably seated in a 1000m² offices near the campus.

“It enables students to integrate practical experience with leading startups during their studies, and at the same time, it enables entrepreneurs to enjoy the diverse qualities of the campus,” says Prof. Porat.

“I’m happy about the given trust of the investors in TAU Ventures and I’m sure that combining forces between academia and industry will provide in the near future significant technological achievements that will benefit the entrepreneurs, the university and society at large.” 

TAU Takes Leading Role in Early Stage Investments

TAU Ventures was established in 2018 by Managing Partner, Nimrod Cohen, together with Tel Aviv University, with the interest in taking a leading role in early stage investments across a wide range of sectors (fintech, foodtech, drones, etc.) in Israel. This is part of a successful trend in the United States of leading universities including MIT, Berkeley & Stanford establishing venture investment arms. 

“Many investors prefer to operate in A or post-seed stages, as they would rather see a product that has already reached the market. We are covering the critical early stage, enabling new companies to emerge,” says Cohen.

Israel’s first university investment arm has proven to be a huge success: TAU Ventures’ first fund of $20 million began in 2018 and made 18 investments including: SWIMM, Xtend, Gaviti, MyAir, Castor, Medorion and more. The first fund IRR is in the top 10% compared to all US funds from the same size and vintage.

All investors from the previous fund have now reinvested in the current fund. Both funds were led by Chartered Group, which brings together leading entities from Japan, plus new investors, including Family Offices in the US, Canada and Europe.

Featured image: TAU Ventures Team, clockwise: Inbal Perlman, Jennifer Schwartz, Ella Iwler and Nimrod Cohen

Saving Lives with Artificial Intelligence

New technology will identify patients at risk for serious illness before they become symptomatic.

Blood infections are one of the leading causes of morbidity and mortality in the world. The body’s immunological response to the infection can cause sepsis or shock, dangerous conditions that have high mortality rates. Thus, it is very important to identify the risk factors for developing serious illness at the early stage of infection. A new technology developed at Tel Aviv University will make it possible, using artificial intelligence (AI), to identify patients who are at risk of serious illness as a result of blood infections.

The researchers trained the AI program to study the medical records of about 8,000 patients at Tel Aviv’s Ichilov Hospital who were found to be positive for blood infections. These records included demographic data, blood test results, medical history and diagnosis. After studying each patient’s data and medical history, the program was able to automatically identify patients at risk of serious illness with an accuracy of 82%, even when ignoring obvious factors such as the age of the patients and the number of hospitalizations they had endured. According to the researchers, in the future this model could even serve as an early warning system for doctors.

Potential to Save Many Lives

Behind this groundbreaking research, with the potential to save many lives, are students Yazeed Zoabi and Dan Lahav from the laboratory of Prof. Noam Shomron of Tel Aviv University’s Sackler Faculty of Medicine, in collaboration with Dr. Ahuva Weiss Meilik, head of the I-Medata AI Center at Ichilov Hospital, Prof. Amos Adler, and Dr. Orli Kehat. The results of the study were published in the journal Scientific Reports.

“We worked with the medical files of about 8,000 Ichilov Hospital patients who were found to be positive for blood infections between the years 2014 and 2020, during their hospitalization and up to 30 days after, whether the patient died or not,” explains Prof. Noam Shomron. “We entered the medical files into software based on artificial intelligence; we wanted to see if the AI would identify patterns of information in the files that would allow us to automatically predict which patients would develop serious illness, or even death, as a result of the infection.”

Cooperation between Researchers and Hospitals

“Using artificial intelligence, the algorithm was able to find patterns that surprised us, parameters in the blood that we hadn’t even thought about taking into account,” says Prof. Shomron. “We are now working with medical staff to understand how this information can be used to rank patients in terms of the severity of the infection. We can use the software to help doctors detect the patients who are at maximum risk.”

Since the study’s success, Ramot – Tel Aviv University Tech Transfer Company, is working to register a global patent for the groundbreaking technology. Keren Primor Cohen, CEO of Ramot, says, “Ramot believes in this innovative technology’s ability to bring about a significant change in the early identification of patients at risk and help hospitals reduce costs. This is an example of effective cooperation between the university’s researchers and hospitals, which improves the quality of medical care in Israel and around the world.”

Featured image: Prof. Noam Shomron (Photo: Corinna Kern)

TAU Experts on Omicron: “Don’t Panic”

Our COVID-19 researchers weigh in on the latest strain.

As scientists race to understand the newest Omicron variant of COVID-19, Tel Aviv University experts share insights—largely reassuring—on the situation. The latest coronavirus strain dominating headlines was first discovered in South Africa in November. Cases have since emerged around the globe, including in Israel. Under the auspices of TAU’s Center for Combating Pandemics, dozens of teams across campus are contributing to global efforts to understand and combat the pandemic. Here is what they are saying about Omicron:  

“Keep Calm and Carry On”— with Protection 

Amid the media maelstrom and uncertainty surrounding Omicron, Dr. Oren Kobiler of the Sackler Faculty of Medicine proscribes the popular adage “keep calm and carry on.” 

“It is best not to panic over Omicron,” he says.​ “This new variant will not change the entire dynamic of the disease. Vaccine efficacy against severe illness was maintained against all variants so far, and it is unlikely that their efficacy will decrease against this variant.” ​

​From a biological and virological perspective, he notes that the Omicron variant is unique and needs further examination. However, the best thing for the general public to do is get fully vaccinated and wear masks. 

“The worst-case scenario is that we will face another wave of infection, but that should not lead to higher rates of mortality due to current vaccination rates,” he says.  

Kobiler, a virology expert, says that Israel is among countries with the highest rates of COVID-19 booster vaccination among its population. “Several immunological studies indicated that this gives us an edge for fighting new variants.” 

“Until everyone is vaccinated, though, we will keep seeing more mutations and variants,” he stresses, adding that widespread inoculation is particularly critical in developing countries where infection and mortality rates are significantly higher than in wealthier nations.  

Get Booster Shots ASAP 

  Prof. Eran Bacharach

The emergence of the Omicron variant has raised questions about the efficacy of booster shots in their current form as opposed to revamped inoculations that may emerge in the future.

Prof. Eran Bacharach, of the Wise Faculty of Life Sciences and a member of the Israeli Ministry of Health’s COVID-19 Vaccine Advisory Team, implores the public to get third injections as soon as possible of COVID-19 vaccines rather than waiting for new versions that may be better formulated to target Omicron. 

“It will still take at least several months before new versions of COVID-19 vaccines are available on the market,” says Bacharach, the head of the molecular virology lab at the Shmunis School of Biomedicine and Cancer Research.  

Prof. Adi Stern, also of the Shmunis School, echoes Kobiler and Bacharach’s calls, adding that until there are updated vaccines, additional new variants will likely emerge. She explains that the spread of infection within a population—or “chain of infection”—is what enables the development of mutations and variants.  

“Inoculation, even with vaccines that aren’t specifically formulated to target a certain strain, is the only thing that will break these ‘chains of infection’ and prevent the emergence of new variants,” says Stern, whose lab has been studying the evolution of SARS-CoV-2, now including the origin and behavior of the Omicron variant.  

 

Prof. Adi Stern

Furthermore, she notes that current vaccines are based on the original wild-type strains seen early in the pandemic. “These vaccines have proved effective thus far in protecting against severe disease and death from existing variants, including the Delta strain. Considering all this, it’s much better to be vaccinated now to promote individual and herd immunity.” 

Minding the Balance 

Between “pandemic fatigue” and hyperbolized fears stoked by some officials, the latest variant outbreak renews questions about how to manage the situation. To avoid spurring panic, Dr. Bruria Adini cautions that public officials should not jump to conclusions about the severity of the Omicron variant when addressing the public. 

“The public needs to be a full partner in the pandemic response. If officials lose the public’s trust, the situation will deteriorate,” says Adini, head of the Department of Emergency and Disaster Management in the School of Public Health, Sackler Faculty of Medicine. 

 

Dr. Bruria Adini

Adini, who has been conducting long-term studies of COVID-19 since March 2020, surveys the public every few months to gauge their emotional status and level of resilience over time. Her research continuously incorporates new developments that contribute to public perceptions, such as the risk versus reward of vaccinating children.  

“It could be Omicron today or a new variant tomorrow, but we’ll live with COVID-19 for at least the near future,” she says.

One of the main concerns countries need to manage now is the prevention of healthcare system overloads.”Strengthening the capacity of medical systems with measures such as more ICU and internal medicine beds will foster more public resilience, which my research has found to be the greatest predictor of behavior such as agreeing to get vaccinated,” she says.  

As opposed to earlier in the pandemic, she notes that the public and governments have shifted their mindset toward coronavirus. She points to the lessening of widespread lockdowns and closures of workplaces and schools amid each new development as a positive indication of evolving pandemic responses.  

Select Omicron media coverage featuring TAU experts:  

 

Ancient Climate Crisis Transformed Us from Nomadic Hunters to Settled Farmers

Researchers used plant remains to reconstruct the climate in the Southern Levant at the end of the last ice age.

What made the residents in the Southern Levant, tens of thousands of years ago, put down their walking sticks and hunting gear and instead become settled farmers? Apparently, it was the result of a climate crisis that took place at the end of the last ice age, about 10,000 to 20,000 years ago.

A new record of significant climate changes in the region, based on the identification of ancient plant remains, sheds light on the dramatic transition. Against the background of the Glasgow Climate Change Summit, the researchers believe that understanding the response of the region’s flora to the dramatic past climate changes can help in preserving the regional variety of plant species and in planning for current and future climate challenges.

The Crisis that Marched Humanity Forward

The research was conducted by Dr. Dafna Langgut of the Department of Archaeology and The Steinhardt Museum of Natural History at Tel Aviv University; Prof. Gonen Sharon, Head of the MA Program in Galilee Studies at Tel-Hai College, and Dr. Rachid Cheddadi, expert in evolution and palaeoecology of University of Montpellier, Institute of Evolutionary Sciences (ISEM) Montpellier, France. The groundbreaking study was recently published in the leading scientific journal Quaternary Science Reviews.

The study was conducted at the prehistoric archaeological site Jordan River Dureijat (“Jordan River Stairs”) on the shores of the ancient Lake Hula. The site is unique for its exceptional preservation conditions yielding finds that enabled discovery of the primary activity of its early local residents – fishing. Preserved botanic remains also enabled researchers to identify the plants that grew 10,000 – 20,000 years ago in the Hula Valley and its surroundings. 

 

The prehistoric archaeological site Jordan River Dureijat (“Jordan River Stairs”) on the shores of the Paleo Lake Hula

Two major processes in world history took place during this period, the first of which was the transition from a nomadic to a settled lifestyle that occurs during a period of dramatic climate change. Prof. Sharon, supervisor of the Madregot Hayarden (“Jordan Stairs”) excavation, explains: “In the study of prehistory, this period is called the Epipalaeolithic period. At its outset, people were organized in small groups of hunter-gatherers who roamed the area. Then, about 15,000 years ago, we are witness to a significant change in lifestyle: the appearance of settled life in villages, and additional dramatic processes that reach their apex during the Neolithic period that followed. This is the time when the most dramatic change of human history occurred – the transition to the agricultural way of life that shaped the world as we know it today.”

Dr. Langgut, an archaeobotanist specializing in identification of plant remains, elaborates on the second dramatic process of this period, namely the climatic changes that occurred in the region. “Although at the peak of the last ice age, about 20,000 years ago, the Mediterranean Levant was not covered with an ice sheet as in other parts of the world, the climatic conditions that existed nevertheless differed from those of today. Their exact characteristics were unclear until this study. The climatic model that we built is based on reconstruction of the fluctuation of the spread of plant species indicating that the main climatic change in our area is expressed by a drop in temperature (up to five degrees Celsius less than today), whereas the precipitation amounts (rain, snow, sleet, or hail) were close to those of today (only about 50 mm less than today’s annual average).

 

Dr. Dafna Langgut

Temperature Fluctuations

However, Dr. Langgut explains that about 5,000 years later, in the Epipalaeolithic period (about 15,000 years ago) a significant improvement in climate conditions can be seen in the model. An increased prevalence of heat-tolerant tree species, such as olive, common oak, and Pistacia, indicate an increase in temperature and precipitation.

During this period, the first sites of the Natufian culture appear in our region. It could very well be that the temperate climate assisted in the development and flourishing of this culture, in which permanent settlement, stone structures, food storage facilities, and more first appear on the global stage.  

The next stage of the study deals with the end of the Epipalaeolithic period, about 11,000-12,000 years ago, known globally as the Younger Dryas period. This period is characterized by a return to a cold, dry climate like that of the ice age, causing somewhat of a climate crisis around the world. The researchers claim that until this study, it was unclear whether and to what extent there was any expression of this period in the Levantine region.

Little Rain, but Throughout the Year

According to the researchers: “The findings that arise from the climate model presented in the article show that the period was characterized by climatic instability, intense fluctuations, and a considerable drop in temperatures. Nevertheless, while reconstructing the precipitation, a surprising phenomenon was discovered: the average quantities of rainfall reconstructed were only slightly less than those of today; however, the precipitation was distributed over the entire year, including summer rains.”

The researchers claim that such distribution assisted in the expansion and thriving of annual and leafy plant species. The gatherers who lived in this period now had a wide, readily available variety of gatherable plants throughout the entire year. This variety enabled their familiarity just before domestication. The researchers are of the opinion that these findings contribute to a new understanding of the environmental changes that took place on the eve of the transition to agriculture and domestication of animals.

Summary

Why did humans settle down and start farming the land? While this study doesn’t fully answer this questions, it does reconstruct the climate in what is today Israel from 20,000 to 10,000 years ago, revealing the dramatic environmental and climatic changes that uniquely combined with social and technological innovations 12,000 years ago and formed the background for the development of acriculture in the Levant. 

The warmer, more humid climate between 15,000 and 13,000 years ago coincided with the Natufian culture, and may have supported their practice of living in one place for a long time, thanks to increased gathering and storage opportunities. Around 13,000 years ago, temperatures sunk a bit and rains would fall throughout the year, favoring open-field vegetation and plants. 12,000 years ago, the Holocene (the current geological era) began, which in the Near East meant long hot and dry summers necessitating gathering and storing food during winter and spring. The new environmental conditions pushed people to make greater efforts to domesticate, farm and store their crops – setting the stage for the Neolithic revolution. 

Dr. Langgut concludes: “This study contributes not only to understanding the environmental background for momentous processes in human history such as the first permanent settlement and the transition to agriculture, but also provides information on the history of the region’s flora and its response to past climatic changes. There is no doubt that this knowledge can assist in preserving species variety and in meeting current and future climate challenges.”

 

Dr. Dafna Langgut collects sediment samples for pollen investigation.

Featured image: An Israeli farmer in his vineyard 

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]