Skip to main content

Tag: Exact Sciences

Impressive achievement for Tel Aviv University in the Bar Association Exam

100% of the TAU alumni who took the Bar Association exams for the first time, passed successfully and Tel Aviv University also leads with the highest average grade.

For the first time, 100% of the TAU examinees who took their Bar Association exams for the first time, passed it successfully, according to the Israel Bar Association.

Tel Aviv University also leads with the highest average grade and overall passing rate (including those who did not take the exam for the first time) of 94%. 

“Israel’s Future Legal Leaders”

The impressive achievement of a 100% passing rate among alumni taking the exam for the first time was also recorded at Bar-Ilan and Haifra universities. In fourth place among those taking the exam for the first time is the Hebrew University (95%). According to the Israel Bar Association, this is a first time increase in the percentage of examinees passing. 

There were a total of 1,506 examinees in the end of June, and 47% of them passed. The percentage of examinees passing the exams on first attempt (597 individuals) is significantly higher than the general passing rate, and stands at 64%.

Like last year, there is a gap between the percentage of passing grades between university and college graduates (although the gaps have narrowed), 87% of the university alumni passed the exam and 41% of the college graduates. 

An analysis of the data by place of specialization, shows that the military/police prosecutor’s office achieved the highest percentage of passing the exam, with 76%; in second place is the state prosecutor’s office for its districts with 65%. Most of the examinees come from the private sector, where the passing rate is 39% out of 1,163 examinees. 

Prof. Yishai Blank, Buchmann Faculty of Law Dean, says, “I am especially proud that the alumni of TAU’s Faculty of Law have, once again, achieved top Bar Examination results with 100% passing the exam and overall earning the highest scores in the country. We are proud of them and the excellent legal training that the Faculty provides them during their studies, preparing them to become Israel’s future legal leaders.” 

Research based on a comprehensive study of 8,000 birds in Israel

Tel Aviv University (TAU) researchers say that climate change may be responsible for changes in the morphology of many birds in Israel over the past 70 years. The body mass of some species decreased while in others body length increased, in both cases increasing the ratio between surface area and volume. The researchers contend that these are strategies to facilitate heat loss to the environment.

“The birds evidently changed in response to the changing climate,” the researchers concluded. “However, this solution may not be fully adequate, especially as temperatures continue to rise.”

The study was led by Professor Shai Meiri and PhD student Shahar Dubiner of the School of Zoology, Wise Faculty of Life Sciences, and the Steinhardt Museum of Natural History at TAU. The paper was published in the scientific journal Global Ecology and Biogeography.

Professor Meiri explains that according to “Bergmann’s rule,” an ecogeographical rule formulated in the 19th century, members of bird and mammal species living in a cold climate tend to be larger than members of the same species living in a warmer climate. This is because the ratio of surface area to volume is higher in smaller animals, permitting more heat loss (an advantage in warm regions), and lower in larger bodies, minimizing heat loss (a benefit in colder climates). Based on this rule, scientists have predicted that global warming will lead to a reduction in animal size, with a possible exception: birds living in the human environment (such as pigeons, house sparrows, and the hooded crow) may gain size due to increased food availability, a phenomenon already witnessed in mammals such as jackals and wolves.

Relying on the vast bird collection preserved by the Steinhardt Museum of Natural History at TAU, the researchers looked for changes in bird morphology over the past 70 years in Israel. They examined approximately 8,000 adult specimens of 106 different species, including migratory birds that annually pass through Israel such as the common chiffchaff, white stork, and black buzzard; resident wild birds like the Eurasian jay, Eurasian eagle-owl, and rock partridge; and commensal birds that live near humans. They built a complex statistical model consisting of various parameters to assess morphological changes — in the birds’ body mass, body length and wing length — during the relevant period.

“Our findings revealed a complicated picture,” Dubiner says. “We identified two different types of morphological changes: some species had become lighter – their mass had decreased while their body length remained unchanged; while others had become longer – their body length had increased, while their mass remained unchanged. These together represent more than half of the species examined, but there was practically no overlap between the two groups – almost none of the birds had become both lighter and longer.

“We think that these are two different strategies for coping with the same problem, namely the rising temperatures. In both cases, the surface area to volume ratio is increased by either increasing the numerator or reducing the denominator, which helps the body lose heat to its environment. The opposite, namely a decrease in this ratio, was not observed in any of the species.”

These findings were observed across the country, regardless of nutrition, and in all types of species. A difference was identified, however, between the two strategies: changes in body length tended to occur more in migrants, while changes in body mass were more typical of non-migratory birds. The very fact that such changes were found in migratory birds coming from Asia, Europe, and Africa suggests that this is a global phenomenon. The study also found that the impact of climate change over time on bird morphology is 10 times greater than the impact of similar differences in temperature between geographical areas.

“Our findings indicate that global warming causes fast and significant changes in bird morphology,” Dubiner concludes. “But what are the implications of these changes? Should we be concerned? Is this a problem, or rather an encouraging ability to adapt to a changing environment? Such morphological changes over a few decades probably do not represent an evolutionary adaptation, but rather certain phenotypic flexibility exhibited by the birds. We are concerned that over such a short period of time, there is a limit to the flexibility or evolutionary potential of these traits, and the birds might run out of effective solutions as temperatures continue to rise.”

TAU Welcomes Ukrainian Emergency Fellowship Students

Some “need time to unfreeze”, as they begin their studies on campus.

Tel Aviv University officially welcomed seven Ukrainian graduate students, who arrived within the framework of the Emergency Fellowship Fund recently announced by the University in light of Russia’s invasion of Ukraine and the ensuing refugee crisis.

The all-women group of students hail from different cities in Ukraine, stretching from Lviv and Kyiv to Mariupol and Mikolaiv, and will continue their studies in law, medicine, psychology, music and linguistics. 

“You are very much wanted here at TAU,” President Ariel Porat told the students at the introductory meeting, expressing hope that despite the unfortunate circumstances students will find “a home away from home” at the University that will enrich their academic and personal lives. 

Constant Worry

Most of the students left their families behind in Ukraine, and worry about their wellbeing around the clock. “I managed to speak to my family yesterday, but today the connection was severed and I was unable to reach them,” says Alisa, a graduate student in law, who will be studying Crisis Management at TAU. She comes from a small town near Mariupol, in Eastern Ukraine, which has suffered some of the heaviest blows in the fighting. Alisa heard about the Fellowship through her academic advisor, as did most of the other students. 

Marina, another law student, was enrolled at the Ukrainian State Pedagogical University in Kropyvnytskyi, a central town which she says is pretty safe for now. The University premises, however, have been converted into living quarters for people escaping from more dangerous areas. Lectures are only taking place online and are highly irregular. “I was supposed to graduate in June,” she tells us, “but for now, I’m just happy to be able to continue my studies here at TAU.”

Kateryna from Kyiv studies psychology, and left immediate family members in Ukraine. “This is my first time in Israel and I know nothing about the local culture, but I’m very curious to learn,” she says, adding that the adjustment process helps her endure the constant concern about her family’s wellbeing. 

“We need some time to ‘unfreeze’, before we can start to take in and appreciate our surroundings,” adds Alisa. 

Here to Help

The students are being offered counseling and psychological services by TAU International, which has been taking full care of them since their arrival in Israel. “In light of the humanitarian situation in Ukraine, we are making a great effort to ensure that the Ukrainian students enjoy their campus experience and have a smooth transition to living in Tel Aviv, and that all their immediate needs are met,” says Michal Linder Zarankin, the School’s International Projects Coordinator.

Their tuition and living expenses are covered by TAU’s $1 million Emergency Fellowship Fund, which was swiftly raised by the University’s donors around the world over the last few weeks. 

Five more Ukrainian students are expected to arrive next week, as well as some faculty members. 

Out of the 30,000 students studying at TAU, over 300 hold dual Israeli-Ukrainian citizenship. In addition to these, there are many Israeli TAU students of Ukrainian and Russian descent. 

Featured image: Ukrainian graduate students are welcomed by TAU’s President Ariel Porat, Prof. Milette Shamir VP International and TAU International staffers

TAU Researchers Identified a Serious Security Flaw in Samsung’s Galaxy Series

TAU Researchers Identified a Serious Security Flaw in Samsung’s Galaxy Series.

Tel Aviv University researchers have discovered a serious security flaw in Samsung’s flagship Galaxy series. The researchers contacted Samsung in May 2021, and in October the company released a software update that fixed the loophole. According to the researchers, users who have not updated their Android software since October are urged to do so as soon as possible, as hackers could take advantage of the loophole found to hack into the Galaxy smartphones in the series and steal sensitive information.

The study was conducted by Prof. Avishai Wool of TAU’s School of Electrical Engineering, Dr. Eyal Ronen of the Blavatnik School of Computer Science, and graduate student Alon Shakevsky.

Securing the Last Layer of Protection

“In protecting smartphones using the Android system, there is a special component called TrustZone” explains Prof. Wool. “This component is a combination of hardware and software, and its job is to protect our most sensitive information – the encryption and identification keys. We found an error in the implementation of Samsung’s TrustZone code, which allowed hackers to extract encryption keys and access secure information.”

“It should be understood that phone companies like Samsung go to enormous lengths to secure their phones, and yet we still hear about attacks, for example in the case of the NSO spyware,” Dr Ronen adds. “TrustZone is designed to be the last layer of protection, the internal safe. So, even if NSO managed to hack into my phone, it still wouldn’t be able to access the encryption keys. For example, if I approve a bank transfer using a fingerprint, the fingerprint enters the phone’s TrustZone, and hackers will have no way to use the fingerprint to carry out transactions in my bank account. In our article, we showed that failures in Samsung’s code also allowed access to these sensitive cryptographic keys.”

 

The Research Team (from left to right): Alon Shakevsky, Prof. Avishai Wool and Dr. Eyal Ronen

“A Secret Code Never Guarantees Longevity” 

In May 2021, the Tel Aviv University researchers contacted Samsung and presented their findings. In October 2021, Samsung released an update to the Android operating software that fixed the major loophole in about 100 million Galaxy phones. The company and the researchers coordinated the date of the publication of the findings and the date of the update in order to prevent hackers from taking advantage the loophole.

“Master’s student Alon Shakevsky worked for months on extracting the code from the device so that we could investigate it,” says Wool, “and two weeks ago hackers broke into the company’s databases and leaked Samsung’s code. The information that was previously confidential is today available to everyone, including researchers like us. Therefore, the lesson for phone companies should be to publish the code in advance, let the experts and researchers check the architecture, and not to rely too much on the code’s secrecy. A secret code never guarantees longevity, because it will eventually leak. In the end, we helped Samsung.”

“In order to protect ourselves,” Dr. Ronen concludes, “we encourage all owners of Samsung Galaxy devices to update their software.”

And Let There Be Light

Efforts by TAU’s Clinical Law Program will help keep electricity running for those who are struggling to pay utility bills.

The recent drop in temperature in Israel has led to a significant increase in electricity consumption. But what about those who simply cannot afford basic necessities?

A petition jointly filed by Tel Aviv University’s Human Rights Clinic at The Buchmann Faculty of Law will help keep the electricity on for some of Israel’s most underprivileged populations. In response to the appeal, Israel’s High Court ruled that electricity must not be cut off for citizens who prove a difficult economic or medical condition, effective immediately. We spoke with attorney Adi Nir Binyamini from TAU’s Human Rights Clinic, one of the lawyers who handled the case. 

Electricity – A Fundamental Right?

In a precedent-setting decision, the High Court ruled on January 20 that access to electricity should be considered a fundamental right and that the Electricity Authority must, within six months, amend the criteria for power outages as a means of collecting debt. Meanwhile, the new ruling assists electricity consumers who find themselves in serious economic or medical distress, and ensure that they will not be left in the dark or the cold and without other basic needs.

The ruling came in response to a petition filed by the Association for Civil Rights in Israel (ACRI) in collaboration with the Human Rights Clinic at Tel Aviv University, Physicians for Human Rights and the Israel Union of Social Workers against the Electricity Authority, the Israel Electric Corp. and Energy Minister. It was filed on behalf of several poor families whose electricity had been cut off for non-payment.

The High Court of Justice ruled that, until the Electricity Authority establishes appropriate criteria and procedures (within six months from the time of the ruling), it must enable consumers facing power cuts from lack of payment to demonstrate whether they are suffering financial or health problems that justify their continued access to electric power. The court said the Electricity Authority must conduct a hearing prior to cutting a customer’s power. It gave the national electricity provider six months to revise its procedures and ordered it to pay the petitioners 40,000 NIS ($12,800) in expenses, to be divided among them. “This is a dramatic change from the previous situation, when it was possible to cut off people’s electricity access due to the accumulation of debt, except for very few exceptions,” explains Att. Nir Binyamini.

 

From the second hearing in Higher Court, on October 28, 2021 (from left to right): Gil Gan Mor (ACRI), Hicham Chabaita and Att. Adi Nir Binyamini from TAU’s Human Rights Clinic and Att. Mascit Bendel (ACRI) 

The Beginning of a New Era

Binyamini, who has dealt with electricity litigation for several years now, says, “I feel personal and professional satisfaction that on the coldest day of the year, when people were left without heating, the High Court accepted our position and ruled not to cut off people’s electricity due to poverty and that debt must instead be collected by more moderate means.”


 When asked how the Clinic got involved with the project, Binyamini explains that TAU’s Humans Rights Clinic was previously part of a legal battle over water disconnections for consumers unable to pay their water bill. “After that was successfully completed, we took on the subject of electricity and have been working on it continuously for the past eight years. The Clinic represented and handled the two petitions that were submitted to the Israeli High Court, and over the years we have dealt with hundreds of individual cases of people being cut off from electricity. We have also been guiding and assisting social workers with individual cases.”

She adds that a large number of students from the Clinic have worked on the case over the years, and stresses that such practical experience is an extremely valuable component of legal education.

Upon the court’s ruling, Binyamini along with Att. Maskit Bendel of the ACRI issued a statement, saying: “We hope that the ruling, which opened with the words ‘and let there be light,’ heralds the beginning of new era when it comes to protecting weak populations from having their electricity cut off.” 

 

Attorney-at-law Adi Nir Binyamini from Tel Aviv University’s Human Rights Clinic (photo: Tomer Jacobson) 

A House is Not a Home Without a Pet

TAU law students are helping elderly citizens and their pets move to senior homes.

Many senior citizens have to part with their beloved pets just when they need them the most: when they leave their homes and transition to live in public housing for the elderly. In many of these governmental institutions, pets are still not allowed – and when they are, the policy is not always implemented. This can cause a painful situation which may harm the mental and physical wellbeing of senior citizens, and affect the welfare of the animals (often senior as well) that find themselves homeless and separated from their loving caretakers.

We have some positive news: There are good people out there who are pro-actively seeking to protect the rights of pet caretakers, as well as the pets’.

Who? Students of The Buchmann Faculty of Law who work through the Clinic for Environmental Justice and the Protection of Animal Rights, an integral part of the The Coller-Menmon Animal Rights and Welfare Program, Israel’s leading and most comprehensive academic program on animal law, at the Faculty of Law. We do realize that’s a mouthful and warrants some further explanation…

Protecting Animals’ Rights

The Clinic for Environmental Justice has been handling a range of environmental issues since 2001. In 2017, it expanded its operations to include the protection of animals’ rights. Through their work at the Clinic, law students get to practice drafting applications, precedents and position papers, closely accompanied by top academics and clinical facilitators from Israel’s legal system. 

Dr. Orit Hirsch-Matsioulas researches human-animal relations. She is a post-doctoral fellow of The Coller-Menmon Animal Rights and Welfare Program and one of the founders of The Community for Human-Animal Studies Israel (HASI). Together with Adv. Amnon Keren, Program Coordinator and Clinical Instructor at the Clinic, she made the rights of the elderly and their pets one of the Clinic’s lead projects.

Both Granny and Kitty Benefit

The project was significantly accelerated when the Clinic decided to handle the appeal of a group of senior citizens who were told they were not allowed to bring their pets to their public housing apartments. “The rights of elderly people were violated,” says Dr. Hirsch-Matsioulas. “Some of them decided against moving because they did not want to part with their pets. Noah, the umbrella organization for Israel’s animal protection associations, contacted us, and we got in touch with the Ministry of Construction and Housing to change the existing policy.”

Dr. Hirsch-Matsioulas presented the Ministry with academic studies on emotional, cognitive and health-related benefits of pet relationships for senior citizens. Moreover, she brought a new element to the attention of the Ministry officials, namely the effect of the relationship on the animals.

“We built a multidisciplinary team of people from the fields of law, social sciences, social work, gerontology (i.e. the multidisciplinary study of aging, including physical aspects as well as mental, social and societal implications) and civil society organizations, and we’re working together with the Ministry of Construction and Housing,” explains Dr. Hirsch-Matsioulas. 

A temporary policy was established, allowing for the entry and keeping of pets in all public senior homes, called בתי גיל הזהב, under the responsibility of Israel’s Ministry of Construction and Housing. It was widely agreed that this temporary right should eventually become permanent, however this is a lengthy process. 

 

Kitty and Milo also have rights. Photo: Vika Minkowitz Mualem

Focusing on Solutions

While we’re excited to share that this undertaking is, in fact, a global precedent, the process of implementing the policy has not been a smooth ride. Due to Covid restrictions, the team has not been able to enter the senior housing buildings to teach the staff about the new guidelines for successful implementation. “The doors have been opened. Now, we must focus on ensuring the optimal execution,” says Dr. Hirsch-Matsioulas. 

Dr. Hirsch-Matsioulas is compiling a report with all the issues that do or may arise. She will then proceed to examine the appropriate solutions for every listed problem, through consultation with relevant professionals. The aim is to come up with suitable solutions for the preservation of the elderly’s right to good health and a dignified life, as well as the preservation of the rights of the animals. Once completed, she will present the list to policy makers to advance the legislation, with the aim that the Ministry of Construction and Housing can adopt the law on a permanent basis. 

The arrived upon solutions will be offered, and hopefully adopted, by additional countries as well.

 

Emotional, cognitive and health benefits enjoyed by both parties. Photo: Vika Minkowitz Mualem

Across Generations and Species

“We intend to visit senior homes, observe and learn, and then to provide cultural programs with positive and educational messages on how to co-exist in a community with multiple living species,” offers Dr. Hirsch-Matsioulas.

“Education is central for promoting change, and we would like to cultivate a new atmosphere on ground through a series of lectures. Children and youth are oftentimes leading agents of change, and we may end up including the grandchildren in this effort.” 

“Beyond our firm conviction that the elderly shouldn’t have to part with their pets, that are to them like family members for all intents and purposes, the Clinic also makes sure that the animals’ interests are represented. Forced removal of an animal from a warm and loving home can cause him or her great suffering, especially in old age,” adds Adv. Keren.

“In recent years, there’s been a growing recognition in Israel of animal rights and their welfare, as key considerations in decision-making pertaining to them. We will continue to develop this trend, whereby the animal is regarded as a subject with his or her own rights, each animal representing a world of his or her own and worthy of protection in and by him- or herself.”

 

Dr. Orit Hirsch-Matsioulas and her good friend, Shenef. 

Featured image: Family and flatmates. Photo: Noah Toledano

For the first time: The “God Particle” has been characterized in its decay into a pair of charm quarks

TAU researchers contribute further understanding of elusive elementary particle that gives mass to everything in the universe

Physicists worldwide have been captivated by the Higgs boson particle, also known as the “God Particle”. Its discovery a decade ago made waves in the physics community, and had researchers curious to learn more about its properties. TAU researchers have now succeeded, as part of a groundbreaking study, to describe a rare physical process through which the Higgs boson decays into a pair of rare elementary particles. The rate of this decay process can now be characterized more precisely and completely than before.

The new study was conducted as part of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) by Prof. Erez Etzion and doctoral students Guy Koren, Hadar Cohen and David Reikher from the Raymond and Beverly Sackler School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, at Tel Aviv University. It was a collaboration with the research team of Prof. Eilam Gross from the Weizmann Institute of Science and others.

Learning More About Forces in Nature

Over fifty years ago, physicists Prof. Peter Higgs and Prof. Francois Englert (who since 1984 has been a Sackler Fellow by special appointment in the TAU School of Physics and Astronomy) estimated that a new particle might exist whose field “provides the mass” to the elementary particles in our world.

In 2012, the end of a 30-year hunt for the Higgs boson was celebrated. Israeli researchers were senior partners in this discovery, and Prof. Halina Abramowicz, who was part of the TAU team, said “The discovery of the Higgs-like particle affirms the world view that the universe is made up of straightforward, symmetrical laws and that humans are the byproduct of disruptions in that symmetry.” Higgs and Englert won the Nobel Prize the following year.

The Challenge of Creating the Higgs boson 

In the particle accelerator, pairs of protons are made to collide with each other at extremely high velocities. In such energetic collisions, various interesting processes can occur, from which, one can learn about the nature of our universe. The way in which these processes are investigated, is by means of a complex array of particle detectors placed around the points of collision, enabling reconstruction of the types of particles that are generated during the collision, as well as their features. A vast range of processes can occur during the collisions, and each has its own unique “signature” in the detector. In order to extract rare events and acquire new insights about the elementary particles and forces in nature, large amounts of statistical data must be collected (i.e. a very large number of collisions must be observed).

The Higgs boson is, as mentioned, a relatively heavy elementary particle, but can be created in collision between protons, as long as the accelerator’s energy is high enough. Immediately after its creation, it decays into lighter particles.

“It is interesting to investigate into which types of particles the Higgs decays, and with what frequency it decays into each type of particle,” says Guy Koren. “To help answer that question, our group is trying to measure the rate at which the Higgs boson decays into particles called ‘charm quarks’.” Quarks are a specific type of particles that share similar features. They compound, for instance, the protons and neutrons, which are in the nuclei of atoms. Koren continues to explain that measuring the decay of Higgs boson into ‘charm quarks’ is not a simple mission, for two reasons: 1. Only one out of billions of collisions [between protons] result in the creation of Higgs bosons. Furthermore, only three percent of the Higgs bosons that do emerge proceed to decay into charm quarks. 2. Five additional types of quarks exist, and they all leave similar signatures in the detectors. So, even when the process does take place, it is very hard to identify.

More Information About The Rate of Decay 

Despite all the collisions that have been collected since 2012, the group from Tel Aviv has not yet identified enough decays of Higgs bosons into charm quarks to measure the rate of the process with the required statistical accuracy.

Nevertheless, sufficient data has been accumulated to state what the maximal rate of the process is with respect to the theoretical predictions. A rate of decay higher than the predicted rate would constitute a first important indicator for “new” physics or expansion of the currently accepted model – the standard model of elementary particles. From the current measurement, the researchers conclude (with a well-defined statistical certainty) that there is no chance that the rate of decay of the Higgs boson into charm quark is 8.5 (or more) times higher than the theoretical predictions, otherwise enough such decays would have been observed in order to measure it. “This is the first time that anyone has ever succeeded in saying something important about the rate of this specific decay based on a direct measurement of it, therefore it is a very important and significant statement in our field,” explains Koren

The research is not yet over, however. Higgs’ decays into quarks of smaller masses have yet to be observed. As a result, the researchers cannot be certain that the same ‘rules’ apply to quarks from those generations. “If it should appear that the Higgs boson decays at a rate that is not proportional to mass (squared) of the particles, there could be far-reaching implications for our understanding of the universe,” explains Prof. Etzion.

Featured image: Illustration: The European Organization for Nuclear Research (CERN)’s LHC accelerator, by which the Higgs boson was detected in 2012 in the ATLAS and CMS experiments

The Sky is Not the Limit

Tel Aviv University Builds and Launches a Nanosatellite into Space

The TAU-SAT1 nanosatellite was devised, developed, assembled, and tested at the new Nanosatellite Center, an interdisciplinary endeavor of the Faculties of Engineering and Exact Sciences and the Porter School of the Environment and Earth Sciences. TAU-SAT1 is currently undergoing pre-flight testing at the Japanese space agency JAXA. From Japan, the satellite will be sent to the United States, where it will “hitch a ride” on a NASA and Northrop Grumman resupply spacecraft destined for the International Space Station in the first quarter of 2021. Once at the station, a robotic arm will release TAU-SAT1 into a low-earth orbit (LEO) around the Earth, approximately 400km above the Earth.

Small satellite – a big step

“This is a nanosatellite, or miniature satellite, of the ‘CubeSat’ variety,” explains Dr. Ofer Amrani, head of Tel Aviv University’s miniature satellite lab. “The satellite’s dimensions are 10 by 10 by 30 cm, the size of a shoebox, and it weighs less than 2.5 kg. TAU-SAT1 is the first nanosatellite designed, built and tested independently in academia in Israel.”

TAU-SAT1 is a research satellite, and will conduct several experiments while in orbit. Among other things, Tel Aviv University’s satellite will measure cosmic radiation in space.

“We know that that there are high-energy particles moving through space that originate from cosmic radiation,” says Dr. Meir Ariel, director of the university’s Nanosatellite Center. “Our scientific task is to monitor this radiation, and to measure the flux of these particles and their products. It should be understood that space is a hostile environment, not only for humans but also for electronic systems. When these particles hit astronauts or electronic equipment in space, they can cause significant damage. The scientific information collected by our satellite will make it possible to design means of protection for astronauts and space systems. To this end, we incorporated a number of experiments into the satellite, which were developed by the Space Environment Department at the Soreq Nuclear Research Center.”

Satellite station on the roof of the faculty building

A challenge that presented itself was how to extract the data collected by the TAU-SAT1 satellite. At an altitude of 400 km above sea level, the nanosatellite will orbit the earth at a dizzying speed of 27,600 km per hour, or 7.6 km per second. At this speed, the satellite will complete an orbit around the Earth every 90 minutes.  “In order to collect data, we built a satellite station on the roof of the engineering building,” says Dr. Amrani. “Our station, which also serves as an amateur radio station, includes a number of antennas and an automated control system. When TAU-SAT1 passes ‘over’ the State of Israel, that is, within a few thousand kilometer radius from the ground station’s receiving range, the antennas will track the satellite’s orbit and a process of data transmission will occur between the satellite and the station. Such transmissions will take place about four times a day, with each one lasting less than 10 minutes. In addition to its scientific mission, the satellite will also serve as a space relay station for amateur radio communities around the world. In total, the satellite is expected to be active for several months. Because it has no engine, its trajectory will fade over time as the result of atmospheric drag – it will burn up in the atmosphere and come back to us as stardust.”

And this is just the beginning

But launching the TAU-SAT1 nanosatellite is only Tel Aviv University’s first step on its way to joining the “new space” revolution. The idea behind the new space revolution is to open space up to civilians as well. Our satellite was built and tested with the help of a team of students and researchers. Moreover, we built the infrastructure on our own – from the cleanrooms, to the various testing facilities such as the thermal vacuum chamber, to the receiving and transmission station we placed on the roof. Now that the infrastructure is ready, we can begin to develop TAU-SAT2. The idea is that any researcher and any student, from any faculty at Tel Aviv University, or outside of it, will be able to plan and launch experiments into space in the future – even without being an expert in the field.

In the last few years Tel Aviv University has been working on establishing a Nanosatellite Center to build small “shoebox” size satellites for launch into space. “We are seeing a revolution in the field of civilian space”, explains Prof. Colin Price, one of the academic heads of the new center.  “We call this new space as opposed to the old space where only giant companies with huge budgets and large teams of engineers could build satellites.  As a result of miniaturization and modulation of many technologies, today universities are building small satellites that can be developed and launched in less than 2 years, and at a fraction of the budget in the old space”, Price continues. “We have just completed the building of Tel Aviv University’s first nano-satellite, and it is ready for launch.”

It will have been only two years from the moment that we began all of the above-mentioned activities until the satellite is launched – this is an achievement that would not have been possible without the involvement of many people: the university administration, who supported the project and the setting up of the infrastructure on campus, Prof. Yossi Rosenwaks, Dean of the Faculty of Engineering, Professors Sivan Toledoand Haim Suchowski from the Faculty of Exact Sciences, and, most importantly, the project team that dealt with R&D around the clock: Elad Sagi, Dolev Bashi, Tomer Nahum, Idan Finkelstein, Dr. Diana Laufer, Eitan Shlisel, Eran Levin, David Greenberg, Sharon Mishal, and Orly Blumberg.

TAU-SAT1 Team here on campus, before leaving to the airport

Featured image: Last inspections in the clean room. TAU SAT1

Tel Aviv University Researcher Heads a Committee in Charge of the Future of the European Science

CERN Council unanimously decided to update its scientific strategy – according to the recommendation of a committee headed by Prof. Halina Abramowicz

After two years of prolonged discussions of physicists from across Europe and outside the continent, the European Organization for Nuclear Research (CERN) decided lately to update its strategy, according to the recommendation of the European Strategy for Particle Physics Update Committee (EPPSU) – headed by Prof. Halina Abramowicz from Tel Aviv University.

Prof. Halina Abramowicz: “As the head of the committee I had to coordinate the effort in its whole. At the beginning of our work at the committee, we clarified the needs of the particle physicist’s scientific community in each country, and afterwards we conducted an international analysis of the proposals’ quality.  After two years of discussions, the European scientific community reached an agreement. Fortunately, CERN Council decided to endorse the committee’s recommendations. Those are heavy financial and political decisions that are made once in a decade, and it’s not every day that Israel finds itself heading a policy-outlining committee.”

The committee headed by Prof. Abramowicz set, in effect, the CERN strategy for the fourth decade of the 21st century, after the Large Hadron Collider (LHC) research program, world’s largest particle collider, would end. The committee decided that the European particle physics’ main goal would be an electron-positron collider which will be a “power house” for the Higgs Boson particle that was discovered for the first time at the LHC. It would be followed by a new, 62-mile-long, proton-proton collider that was proposed and which is expected to surpass the energy production records of the LHC. Its cost is estimated at 25 billion dollars.

The Higgs Boson particle was discovered at the LHC in 2012 and caused a revolution in particle physics. Not only is the Higgs Boson the last missing part in the standard particle model, but it also was proven to be completely different from any other particle previously measured. The research regarding the Higgs Boson is just taking its first steps, but the particle properties, such as its light weight, already raise profound questions that the standard model cannot explain. It is very hard to accurately measure the particle, also known as the god particle, and hopefully, the new approach, recommended by Prof. Abramowicz’s committee, will allow more accurate measurements of the Higgs Boson, thus paving the way for new insights about the basic fabric of the universe.

“We are trying to understand how the universe started and what it’s made of – this is basic science,” explains Prof. Abramowicz. “But, in order to understand this we need technological advances and developments, some of which are being implemented afterwards in other fields as well. For example, the PET CT, a medical tomography test used worldwide at medical centers, was developed due to projects similar to the LHC, as well as several significant developments in Big Data processing in the Cloud Computing field. In order to examine the feasibility of the new collider, CERN works these days on developing world first magnets which will use high temperature super conductors – a development which can cause a revolution in transportation, with floating magnet trains, and those are just a few examples. We don’t know which doors would be opened to us with this new challenge that the committee made CERN face – both in basic science and in collaboration with the industry, which will be needed to build the collider.”

To achieve the ambitious ESPPU goals, particle physicists are being called to execute vigorous research and development programs (R&D) of advanced collider technologies, particularly regarding high level and high temperature super conductors. In addition, the roadmap includes R&D of plasma wakefield acceleration, as well as an international research with the option of realising a muon collider and R&D of advanced detectors.

“Israel joined CERN as a full member in 2014, and is the first and only non-European country to join,” says Prof. Abramowicz, who takes part in the “ATLAS” experiment at the LHC. “It’s our national lab. Researchers from Tel Aviv University, the Ben-Gurion University, the Hebrew University, Technion – Israel Institute of Technology, and Weizmann Institute are senior partners running experiments at the LHC. Therefore, recommendations made by the EPPSU committee are important not only to science but also to our scientific community, technology, economy and our society. ”

Featured image: Prof. Halina Abramowicz

A new, revolutionary way to simplify complex scientific calculations

Your zip software could calculate entropy as well as a supercomputer, TAU researchers say

Researchers at Prof. Roy Beck’s lab have figured out a simple and accessible solution to a problem that even supercomputers struggle with: measuring entropy, the level of molecular disorder or randomness in a complext system. In complex physical systems, the interaction of internal elements is unavoidable, rendering entropy calculation a computationally demanding, and often impractical, task. The tendency of a properly folded protein to unravel, for example, can be predicted using entropy calculations. Now, a new Tel Aviv University study proposes a radically simple and efficient way of calculating entropy — and it probably exists on your own computer. “We discovered a way to calculate entropy using a standard compression algorithm like the zip software we all have on our computers,” explains Prof. Roy Beck of TAU’s School of Physics and Astronomy. “Supercomputers are used today to simulate the folding or misfolding of proteins in diseased states. Our study demonstrated that by using a standard compression algorithm, we can provide new insights into the physical properties of these proteins by calculating their entropy values using a compression algorithm.

A veriety of new solutions

“Having the ability to calculate entropy meets an urgent need to harness the incredible power of computer simulations to address urgent, timely problems in science and medicine,” Prof. Beck adds. The research was led by him and conducted by TAU PhD students Ram Avinery and Micha Kornreich. According to Prof. Beck, the research has endless applications. From biomedical simulations to basic research conducted in physics, chemistry or material science, the new algorithm would be simple to use on any computer. “A high school student used our concept to calculate the entropy of a complex physical system — the XY model,” says Prof. Beck. “Although this is considered a challenging problem with regard to entropy, the student accomplished it with very little guidance. This demonstrates how easily this method can be used by almost anybody to solve very interesting problems.”

A by-the-way discovery

The idea for the computational method first came about when Prof. Beck’s students, Avinery and Kornreich, discussed entropy from the point of view of information theory. They wondered how well this idea might work in practice rather than in theory. “They simulated a few standard physical systems with entropy values they can compare to,” says Prof. Beck. “Soon they found that the simulation data file size after compression rises and falls just as the expected entropy should. Shortly after that, they realized they could convert the compressed file size into a usable value — the physical entropy. Surprisingly, the simple conversion they used was valid for all the systems studied.” The researchers are currently expanding the application of their methodology to a wide and varied selection of systems. “Since we started working and talking about our work, we have been approached by many researchers from very different fields, asking us to help them calculate entropy from their data,” concludes Prof. Beck. “For now, we are concentrating on simulation of protein folding, a timely and urgent topic that can benefit tremendously from our discovery.”

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]