Skip to main content

Author: AUFTAU

First 3D-bioprinting of entire active tumor

Research team(Left to right): Eilam Yeini, Prof. Satchi-Fainaro and Lena Neufeld

Scientific breakthrough in the battle against cancer

The 3D print of glioblastoma – the deadliest type of brain cancer – is printed from human glioblastoma tissues containing all components of the malignant tumor

Researchers: the breakthrough will enable much faster prediction of best treatments for patients, accelerate the development of new drugs and discovery of new druggable targets

A scientific achievement for researchers at Tel Aviv University: printing an entire active and viable glioblastoma tumor using a 3D printer. The 3D-bioprinted tumor includes a complex system of blood vessel-like tubes through which blood cells and drugs can flow, simulating a real tumor.

Illustration.
Credit: Veronica Hughes, PhD of STEAM visuals

The study was led by Prof. Ronit Satchi-Fainaro, Sackler Faculty of Medicine and Sagol School of Neuroscience, Director of the Cancer Biology Research Center, Head of the Cancer Research and Nanomedicine Laboratory and Director of the Morris Kahn 3D-BioPrinting for Cancer Research Initiative, at Tel Aviv University.

The new technology was developed by PhD student Lena Neufeld, together with other researchers at Prof. Satchi-Fainaro’s laboratory:  Eilam Yeini, Noa Reisman, Yael Shtilerman, Dr. Dikla Ben-Shushan, Sabina Pozzi, Dr. Galia Tiram, Dr. Anat Eldar-Boock and Dr. Shiran Farber.  

The 3D-bioprinted models are based on samples from patients, taken directly from operating rooms at the Tel Aviv Sourasky Medical Center. The new study’s results were published today in the prestigious journal Science Advances.

“Glioblastoma is the most lethal cancer of the central nervous system, accounting for most brain malignancies”

“Glioblastoma is the most lethal cancer of the central nervous system, accounting for most brain malignancies,” says Prof. Satchi-Fainaro. “In a previous study, we identified a protein called P-Selectin, produced when glioblastoma cancer cells encounter microglia – cells of the brain’s immune system. We found that this protein is responsible for a failure in the microglia, causing them to support rather than attack the deadly cancer cells, helping the cancer spread. However, we identified the protein in tumors removed during surgery, but not in glioblastoma cells grown on 2D plastic petri dishes in our lab. The reason is that cancer, like all tissues, behaves very differently on a plastic surface than it does in the human body. Approximately 90% of all experimental drugs fail at the clinical stage because the success achieved in the lab is not reproduced in patients.”

Prof. Ronit Satchi-Fainaro

To address this problem, the research team led by Prof. Satchi-Fainaro and PhD student Lena Neufeld, recipient of the prestigious Dan David Fellowship, created the first 3D-bioprinted model of a glioblastoma tumor, which includes 3D cancer tissue surrounded by extracellular matrix, which communicates with its microenvironment via functional blood vessels.

Microscopic image of the 3D-bioprinted glioblastoma model. The bioprinted blood vessels are covered with endothelial cells (red) and pericytes (cyan). The blood vessels are surrounded with a brain-mimicking tissue composed of gliblastoma cells (blue) and the brain microenvironment cells (green). Different drugs or cells can be perfused through the 3D-bioprinted blood vessels to test their effect on the tumor tissue

“It’s not only the cancer cells…”

“It’s not only the cancer cells,” explains Prof. Satchi-Fainaro. “It’s also the cells of the microenvironment in the brain; the astrocytes, microglia and blood vessels connected to a microfluidic system – namely a system enabling us to deliver substances like blood cells and drugs to the tumor replica. Each model is printed in a bioreactor we have designed in the lab, using a hydrogel sampled and reproduced from the extracellular matrix taken from the patient, thereby simulating the tissue itself. The physical and mechanical properties of the brain are different from those of other organs, like the skin, breast, or bone. Breast tissue consists mostly of fat, bone tissue is mostly calcium; each tissue has its own properties, which affect the behavior of cancer cells and how they respond to medications. Growing all types of cancer on identical plastic surfaces is not an optimal simulation of the clinical setting.”

After successfully printing the 3D tumor, Prof. Satchi-Fainaro and her colleagues demonstrated that unlike cancer cells growing on petri dishes, the 3D-bioprinted model has the potential to be effective for rapid, robust, and reproducible prediction of the most suitable treatment for a specific patient.

“We proved that our 3D model is better suited for prediction of treatment efficacy, target discovery and drug development in three different ways.

First, we tested a substance that inhibited the protein we had recently discovered, P-Selectin, in glioblastoma cell cultures grown on 2D petri dishes, and found no difference in cell division and migration between the treated cells and the control cells which received no treatment. In contrast, in both animal models and in the 3D-bioprinted models, we were able to delay the growth and invasion of glioblastoma by blocking the P-Selectin protein.

This experiment showed us why potentially effective drugs rarely reach the clinic simply because they fail tests in 2D models, and vice versa: why drugs considered a phenomenal success in the lab, ultimately fail in clinical trials. In addition, collaborating with the lab of Dr. Asaf Madi of the Department of Pathology at TAU’s Faculty of Medicine, we conducted genetic sequencing of the cancer cells grown in the 3D-bioprinted model, and compared them to both cancer cells grown on 2D plastic and cancer cells taken from patients.

Thus, we demonstrated a much greater resemblance between the 3D-bioprinted tumors and patient-derived glioblastoma cells grown together with brain stromal cells in their natural environment. Through time, the cancer cells grown on plastic changed considerably, finally losing any resemblance to the cancer cells in the patient’s brain tumor sample.

The third proof was obtained by measuring the tumor growth rate. Glioblastoma is an aggressive disease partially because it is unpredictable: when the heterogeneous cancer cells are injected separately into model animals, the cancer will remain dormant in some, while in others, an active tumor will develop rapidly. This makes sense because we, as humans, can die peacefully of old age without ever knowing we have harbored such dormant tumors. On the dish in the lab, however, all tumors grow at the same rate and spread in the same rate. In our 3D-bioprinted tumor, the heterogeneity is maintained and development is similar to the broad spectrum that we see in patients or animal models.”

“…perhaps the most exciting aspect is finding novel druggable target proteins and genes in cancer cells…”

According to Prof. Satchi-Fainaro, this innovative approach will also enable the development of new drugs, as well as discovery of new drug targets – at a much faster rate than today. Hopefully, in the future, this technology will facilitate personalized medicine for patients.

“If we take a sample from a patient’s tissue, together with its extracellular matrix, we can 3D-bioprint from this sample 100 tiny tumors and test many different drugs in various combinations to discover the optimal treatment for this specific tumor. Alternately, we can test numerous compounds on a 3D-bioprinted tumor and decide which is most promising for further development and investment as a potential drug.

But perhaps the most exciting aspect is finding novel druggable target proteins and genes in cancer cells – a very difficult task when the tumor is inside the brain of a human patient or model animal. Our innovation gives us unprecedented access, with no time limits, to 3D tumors mimicking better the clinical scenario, enabling optimal investigation.”

Illustration for demonstration of 3D printing of a tumor in a brain Microenvironment according to a computed 3D model

The study was funded by the Morris Kahn Foundation, European Research Council (ERC), Israel Cancer Research Fund (ICRF), the Israel Cancer Association and Israel Science Foundation (ISF), and Check Point Software Technologies LTD.

Continue reading

Prof. Isaac Ben-Israel Receives the IEEE Leadership Award

For his outstanding leadership contributions to homeland security, cyber security and resilience.

The Institute of Electrical and Electronics Engineers (IEEE) has extended its IEEE TCHS Outstanding Leadership Award in the field of cyber for the year 2021 to Major Gen. (Ret.) Prof. Isaac Ben-Israel, Head of the ICRC – Blavatnik Interdisciplinary Cyber Research Center.

The announcement of IEEE’s award committee members: “This award recognizes an individual’s outstanding leadership contributions to the homeland security community in general and to the field of cyber security and resilience in particular. The award recognizes the leadership and visionary contributions to the society at large through the promotion and applications of security and resilience concepts to a variety of technology, science, and business domains.”

“It is a great honor and I am very excited to receive the IEEE Award. I see great importance in receiving the award not only personally but also nationally, as the award is not only a recognition of my work but a recognition of Israel’s central and unique status in the cyber world,” said Prof. Isaac Ben-Israel.

As part of his wide-ranging activities, Prof. Ben Israel headed the project to formulate Israel’s national cyber program, and he heads the anual “Cyber ​​Week” events, one of the world’s leading cybersecurity conferences, where experts from industry, government and academia across the globe come together to exchange cyber dialogue on current issues, trends and technological solutions.

In 2012, Prof. Ben Israel was elected a Lifetime Member of the International Academy of Austronautics (IAC) and became a member of the Research, Innovation and Enterprise Council (RIEC) in Singapore. In addition to his academic work, Prof. Ben-Israel serves as Chairman of Israel Space Agency and he has received the Israel Defense Forces Award twice.

IEEE is the world’s largest technical professional organization (419,000 members from over 160 countries) dedicated to advancing technology for the benefit of humanity. 

Where Have All the Birds Gone?

Humans Behind Extinction of Hundreds of Bird Species Over the Last 50,000 Years.

A new study from Tel Aviv University and the Weizmann Institute revealed that over the last 20,000-50,000 years, birds have undergone a major extinction event, inflicted chiefly by humans, which caused the disappearance of about 10%-20% of all avian species. The vast majority of the extinct species shared several features: they were large, they lived on islands, and many of them were flightless.

The main cause for extinction of species by humans today has evolved from being hunting to the destruction of the animals’ natural habitats, but the researchers hope their findings will serve as warning signals regarding bird species currently threatened with extinction.

The study was led by Prof. Shai Meiri of the School of Zoology at The George S. Wise Faculty of Life Sciences and the Steinhardt Museum of Natural History at Tel Aviv University, and Amir Fromm of the Weizmann Institute of Science. The paper was published in the Journal of Biogeography.

Human-Inflicted Extinction

Prof. Meiri: “We conducted a comprehensive review of scientific literature, and for the first time collected quantitative data on the numbers and traits of extinct species of birds worldwide. Those that became extinct in the last 300 years or so are relatively well known, while earlier species are known to science from remains found in archaeological and paleontological sites worldwide. Altogether we were able to list 469 avian species that became extinct over the last 50,000 years, but we believe that the real number is much higher.”

The researchers believe that the vast extinction was caused primarily by humans who hunted the birds for food, or by animals brought to islands by humans – that fed on the birds and/or their eggs. This assumption is based on the fact that the greater part of bird remains was found on human sites, apparently belonging to birds consumed by the inhabitants, and in most cases the extinctions occurred shortly after the arrival of humans.

Coveted Targets for Hunters

Most extinct species shared three major features:

  1. About 90% of them lived on islands – When humans arrived on the island, the birds were hunted by them, or fell victim to other animals introduced by humans, such as pigs, rats, monkeys, and cats.
  2. Most extinct bird species were large, some very large – The body mass of the extinct species was found to be up to 10 times as large as that of surviving species. The larger birds provided humans with a great quantity of food, thus they were a preferred target for hunters. Previous studies have found a similar phenomenon among mammals and reptiles, especially lizards and turtles that lived on islands: the larger ones were hunted by humans and became extinct.
  3. A large portion of the extinct bird species were flightless, and often unable to escape their pursuers – The study found that the number of flightless bird species that became extinct is double the number of flightless species still existing today; all in all, 68% of the flightless bird species known to science became extinct. One of the better-known examples is the moa bird in New Zealand: 11 species of moa became extinct within 300 hundred years, due to hunting by humans

Prof. Meiri: “Our study indicates that before the major extinction event of the past millennia, many more large, even giant, as well as flightless avian lived on our globe, and the diversity of birds living on islands was much greater than today. We hope that our findings can serve as warning signals regarding bird species currently threatened with extinction, and it is therefore important to check whether they have similar features. It must be noted, however, that conditions have changed considerably, and today the main cause for extinction of species by humans is not hunting but rather the destruction of natural habitats.”

Featured image: Bird species at the Zoological Garden

For the first time: The “God Particle” has been characterized in its decay into a pair of charm quarks

TAU researchers contribute further understanding of elusive elementary particle that gives mass to everything in the universe

Physicists worldwide have been captivated by the Higgs boson particle, also known as the “God Particle”. Its discovery a decade ago made waves in the physics community, and had researchers curious to learn more about its properties. TAU researchers have now succeeded, as part of a groundbreaking study, to describe a rare physical process through which the Higgs boson decays into a pair of rare elementary particles. The rate of this decay process can now be characterized more precisely and completely than before.

The new study was conducted as part of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) by Prof. Erez Etzion and doctoral students Guy Koren, Hadar Cohen and David Reikher from the Raymond and Beverly Sackler School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, at Tel Aviv University. It was a collaboration with the research team of Prof. Eilam Gross from the Weizmann Institute of Science and others.

Learning More About Forces in Nature

Over fifty years ago, physicists Prof. Peter Higgs and Prof. Francois Englert (who since 1984 has been a Sackler Fellow by special appointment in the TAU School of Physics and Astronomy) estimated that a new particle might exist whose field “provides the mass” to the elementary particles in our world.

In 2012, the end of a 30-year hunt for the Higgs boson was celebrated. Israeli researchers were senior partners in this discovery, and Prof. Halina Abramowicz, who was part of the TAU team, said “The discovery of the Higgs-like particle affirms the world view that the universe is made up of straightforward, symmetrical laws and that humans are the byproduct of disruptions in that symmetry.” Higgs and Englert won the Nobel Prize the following year.

The Challenge of Creating the Higgs boson 

In the particle accelerator, pairs of protons are made to collide with each other at extremely high velocities. In such energetic collisions, various interesting processes can occur, from which, one can learn about the nature of our universe. The way in which these processes are investigated, is by means of a complex array of particle detectors placed around the points of collision, enabling reconstruction of the types of particles that are generated during the collision, as well as their features. A vast range of processes can occur during the collisions, and each has its own unique “signature” in the detector. In order to extract rare events and acquire new insights about the elementary particles and forces in nature, large amounts of statistical data must be collected (i.e. a very large number of collisions must be observed).

The Higgs boson is, as mentioned, a relatively heavy elementary particle, but can be created in collision between protons, as long as the accelerator’s energy is high enough. Immediately after its creation, it decays into lighter particles.

“It is interesting to investigate into which types of particles the Higgs decays, and with what frequency it decays into each type of particle,” says Guy Koren. “To help answer that question, our group is trying to measure the rate at which the Higgs boson decays into particles called ‘charm quarks’.” Quarks are a specific type of particles that share similar features. They compound, for instance, the protons and neutrons, which are in the nuclei of atoms. Koren continues to explain that measuring the decay of Higgs boson into ‘charm quarks’ is not a simple mission, for two reasons: 1. Only one out of billions of collisions [between protons] result in the creation of Higgs bosons. Furthermore, only three percent of the Higgs bosons that do emerge proceed to decay into charm quarks. 2. Five additional types of quarks exist, and they all leave similar signatures in the detectors. So, even when the process does take place, it is very hard to identify.

More Information About The Rate of Decay 

Despite all the collisions that have been collected since 2012, the group from Tel Aviv has not yet identified enough decays of Higgs bosons into charm quarks to measure the rate of the process with the required statistical accuracy.

Nevertheless, sufficient data has been accumulated to state what the maximal rate of the process is with respect to the theoretical predictions. A rate of decay higher than the predicted rate would constitute a first important indicator for “new” physics or expansion of the currently accepted model – the standard model of elementary particles. From the current measurement, the researchers conclude (with a well-defined statistical certainty) that there is no chance that the rate of decay of the Higgs boson into charm quark is 8.5 (or more) times higher than the theoretical predictions, otherwise enough such decays would have been observed in order to measure it. “This is the first time that anyone has ever succeeded in saying something important about the rate of this specific decay based on a direct measurement of it, therefore it is a very important and significant statement in our field,” explains Koren

The research is not yet over, however. Higgs’ decays into quarks of smaller masses have yet to be observed. As a result, the researchers cannot be certain that the same ‘rules’ apply to quarks from those generations. “If it should appear that the Higgs boson decays at a rate that is not proportional to mass (squared) of the particles, there could be far-reaching implications for our understanding of the universe,” explains Prof. Etzion.

Featured image: Illustration: The European Organization for Nuclear Research (CERN)’s LHC accelerator, by which the Higgs boson was detected in 2012 in the ATLAS and CMS experiments

New Warning Sign for Breast Cancer

TAU-led research lays groundwork for preventive treatment that may save millions of lives.

A team led by Tel Aviv University identified a new indicator of metastatic breast cancer, laying the groundwork for preventive treatment that could save millions of lives.

Metastatic breast cancer, also known as Stage 4 breast cancer, occurs when cancer has spread, or “metastasized,” to other parts of the body. Mortality from breast cancer is almost exclusively a result of tumor metastasis, and lungs are one of the main metastatic sites. The five-year survival rate for women with metastatic breast cancer is estimated at 28%.

Investigating The “Black Box” of Breast Cancer 

“Breast cancer patients, as well as patients with many other types of cancer, do not die from the primary tumor, but from distant metastases which have developed, sometimes after years, in essential organs such as the lungs and brain,” said the study’s lead researcher, Prof. Neta Erez, Chair of the Department of Pathology at TAU’s Sackler Faculty of Medicine. “Understanding the body’s preparation for the reception of metastases at an early stage may save millions of lives.”

The researchers explain that metastases can appear several years after the initial cases are treated. Today, methods used for follow-up screening identify metastases only when they are quite large–when the disease is at an advanced stage and unlikely to be cured.

For this reason, Erez’s research group is investigating the black box—the time period between apparent recovery and the appearance of metastases to understand the metastatic process and to find ways of blocking it in early stages. Their research in recent years has revealed that certain tissues, in organs where the metastases are set to arrive, “prepare the area” for reception and produce a hospitable environment for them, a long time before the appearance of the metastases themselves. In the present study, the research team searched for signs of these changes, which may be used in the future to identify the start of the process that predicts metastases. The researchers identified these changes in the area known as “the micro-environment” of the tumor, and specifically in connective tissue known as fibroblasts which are found in the lungs among other places. 

“In a normal situation, fibroblasts play a central role in healing wounds and injury to the lungs, but recent studies revealed that cancer is successful in recruiting them and causing them to produce a supportive environment for it,” said Erez.

What is Happening in the Micro-environment of the Metastases?

The researchers compared genes sequenced from healthy lungs, from lungs with micro-metastases (very small metastases which cannot be identified using existing clinical tools) and from lungs with large metastases, in a state of advanced disease.

By identifying and comparing the respective development in the three different types of sample tissues, the researchers succeeded, for the first time, in characterizing the process that occurs in the micro-environment of the metastases. The findings provide valuable understanding about how cancer cells grow, which can then be leveraged for detection by existing imaging methods and treated to prevent metastasis.

The study’s leading research team from Erez’s laboratory included Dr. Ophir Shani and Dr. Yael Raz along with additional researchers from Tel Aviv University, Sheba Medical Center at Tel HaShomer, Tel Aviv Sourasky Medical Center (Ichilov Hospital), and the Weizmann Institute of Science. The findings were published in the prestigious peer-reviewed journal eLife.  

Featured image: Prof. Neta Erez (Photo: Michal Kidron)

Diminishing at the Edges

TAU study reveals: overfishing severely harms marine protected areas around the world

A new study by Tel Aviv University reveals significant ecological damage to many marine protected areas (MPAs) around the world. A strong “edge effect” was observed, resulting in a 60% reduction in the fish population living on their outer edges (1-1.5 km), compared to the core areas. The “edge effect” significantly diminishes the effective size of those areas, and largely stems from human pressures, first and foremost overfishing at their borders.

Marine protected areas were designed to preserve marine ecosystems, and help to conserve and restore fish populations and marine invertebrates whose numbers are increasingly dwindling due to overfishing. The effectiveness of the protected areas has been proven in thousands of studies conducted worldwide. At the same time, most studies sample only their “inside” and “outside”, and there still is a knowledge gap about what happens in the space between their core and areas around them that are open for fishing.

The study was conducted by Sarah Ohayon, a doctoral student at the laboratory of Prof. Yoni Belmaker, School of Zoology, The George S. Wise Faculty of Life Sciences, and The Steinhardt Museum of Natural History at Tel Aviv University. The study was recently published in the Nature Ecology & Evolution Journal.

 

The “Edge Effect”

When a protected area functions properly, the expectation is that the recovery of the marine populations within it will result in a spillover, a process where fish and marine invertebrates migrate outside its borders. In this way, the protected area can contribute not only to the conservation of marine nature, but also to the renewal of fish populations surrounding it that have dwindled due to overfishing.

To identify the dominant spatial pattern of marine populations from within the protected areas to the surrounding areas (that are open for fishing), the researchers analyzed marine populations from dozens of protected areas located in different parts of the oceans. 

“When I saw the results, I immediately understood that we are looking at a pattern of edge effect”, says Ohayon. “The edge effect is a well-studied phenomenon in terrestrial protected areas, but surprisingly it has not yet been studied empirically in MPAs. “This phenomenon occurs when there are human disturbances and pressures around the protected area, such as hunting/fishing, noise or light pollution that reduce the size of natural populations within the protected areas, close to their borders”.

 

No-Take Marine Protected Areas Are Too Small

The researchers found that 40% of the no-take MPAs (areas where fishing activity is completed prohibited) around the world are less than 1 km2, which means that entire area is likely to experience an edge effect. In total, 64% of all no-take MPAs in the world are smaller than 10 km2 and may hold only about half (45-56%) of the expected population size in their area compared to a situation without an edge effect. These findings indicate that the global effectiveness of existing no-take areas is far less than previously thought.

It should be emphasized that the edge effect pattern does not eliminate the possibility of fish spillover, and it is quite plausible that fishers still enjoy large fish coming from within the protected areas. This is evidenced by the concentration of fishing activity at their borders. At the same time, the edge effect makes it clear to us that marine populations near the borders of the protected areas are declining at a faster rate than the recovery of the populations surrounding them.

 

Buffer, Enlarge and Enforce

The study findings also show that in protected areas with buffer zones around them, no edge effect patterns were recorded, but rather a pattern consistent with fish spillover outside their borders. Additionally, a smaller edge effect was observed in well-enforced protected areas than in those where illegal fishing was reported.

“These findings are encouraging, as they signify that by putting buffer zones in place, managing fishing activity around marine protected areas and improving enforcement, we can increase the effectiveness of the existing protected areas and most probably also increase the benefits they can provide through fish spillover”, adds Ohayon.

“When planning new marine protected areas, apart from the implementation of regulated buffer zones, we recommend that the no-take MPAs targeted for protection be at least 10 km2 and that their shape be as round as possible. These measures will reduce the edge effect. Our research findings provide practical guidelines for improving the planning and management of marine protected areas, so that we can do a better job of protecting our oceans.” 

Featured image: Photo credit Dr. Shevy Rothman

This Exhibition Will Make You Sweat

New exhibition on climate crisis gives us tools to save the planet.

Recent news has covered extreme events all over the world: floods in Germany, Belgium and central China, huge wildfires raging in California, consuming thousands of acres of land and extreme temperatures in Canada, Iraq and the United States. Scientists no longer doubt that all this and more is taking place due to global warming, and what is commonly referred to as the “climate crisis”

Seeking to educate the Israeli public on the science behind the concepts that we keep hearing, such as the greenhouse effect, global warming and carbon footprint, the Steinhardt Museum of Natural History has set up the exhibition “Global Warning: The Climate, the Crisis and Us”, which encourages the public to learn more about the subject and become ambassadors who will lead the long-awaited change. We checked, and can share with you that it is impossible to remain indifferent after visiting the exhibition.

How Many Trees Are Working Just for You?

The exhibition, which the museum has been working on for over a year, guides the visitors to the sea, land, glaciers and forests, in the past, present and future. It presents current scientific findings and basic concepts in the field in simple terms and through interactive means, such as videos, thermal cameras that expose thermal gases that surround us, and more.

It uncovers the dire consequences of the climate crisis here in Israel and worldwide, and illustrates the impact of our daily choices as individuals. Everything is not lost; the exhibition illuminates how we can counteract the changes that are causing the crisis and reduce the harm caused to us and the environment.

The various stations of the exhibition show how popular tourist spots may look like in 20 years from now, what the atmospheric composition was thousands of years ago, and what it may be in a few decades from now. The connection between allergies and global warming is explained, as well as what it will be like when sea level reaches our shoulders. You can even check what your personal carbon footprint is, by the help of an online calculator which was developed especially for the exhibition and is the first of its kind in Israel.

 

What do greenhouse gases look like? Judi Lax explains big concepts in simple language.

Fostering Change Agents

The new exhibition does not, however, intend to scare us into passivity: “We wish to increase the awareness surrounding our daily choices, such as what to eat, how to travel, what to buy and what not to buy. These things have implications and a price beyond the cost of the purchase itself. Oftentimes, people hear about the climate crisis and say, “Ok, but how does this relate to me?” We wish to impart that, although a lot [of damage] has accumulated, it is not all lost. We also have a hand in the matter, and can undo some of the damage,” explains Hadas Zemer Ben-Ari, the exhibition’s curator and designer. “Along with the experience of visiting the exhibition, we strive to make our visitors agents of change, who will spread the message outside the walls of the museum and inspire many others to work for the change that we so desperately need,” says Prof. Tamar Dayan, Museum Chair at the Steinhardt Museum of Nature.

The Museum joins some of the worlds’ largest museums in the common mission to carry out their social role in educating the wider audience on the topic of the climate crisis and the discussion of the biodiversity crisis and its impacts. Museum Director Alon Sapan explains that museums are capable of illustrating and simulating a complex reality and the processes that led to it, along with predictions for the future, while ensuring the visitors’ experience and encouraging their curiosity. “I hope that the exhibition will inspire questions, and also enlighten individuals on how they contribute to positive change by adjusting their personal habits,” concludes Sapan.

 

An invitation to change a habit (or three!) at the “Global Warning” exhibition.

Featured image: The exhibition “Global Warning: The Climate, the Crisis and Us” (Photo: Dor Kimchi)

Read more and purchase tickets here >> 

He’s Bringing Plastic Back

TAU alumnus Tal Cohen and his company “Plastic Back” converts plastic waste back to its original form.

We use plastic in almost every aspect of our lives. It is cheap in production, durable and can be reused multiple times. The problem is, though, that 350M tons of plastic waste is produced annually, out of which only 8% is recycled. To counter the environmental hazard, laws and regulations, are implemented towards reducing landfill and increasing recycling. The EU has pledged to reduce landfilling to 10% of its current capacity by 2030. We spoke with Tal Cohen, a TAU alumnus with an MBA from the Coller School of Management and founder of a startup company called “Plastic Back”, who may have found the perfect solution.

The Big Savior Becomes the Big Offender

When plastic was originally introduced, 70 years ago, it was commonly believed that it would contribute to save the environment. “When plastic was first introduced, it was actually thought to be the big savior of the future environment, replacing the use of ivory, tortoise shell and corals. While petroleum came to the relief of the whale, plastic has given the elephant, the tortoise and the coral a respite in their native haunts,” says Tal. With time, however, it went from being the big savior to instead becoming recognized as a major environmental hazard,” Tal muses. Over the past 70 years since its invention, 8.3 billion tons of plastic waste has been accumulated worldwide.

And how is plastic produced? “After developing over millions of years underground, crude oil is drilled out and extracted. It is then sent to be refined by the petrochemical industry, after which it can be used for various purposes, such as fuel for cars and… plastic production,” explains Tal. Plastic is, in other words, produced from oil, a non-renewable source of energy.  

Tal is well acquainted with plastic. After earning his B.Sc. in Marine Sciences and Environment at the Ruppin Academic Center, Tal Cohen worked as a marine biologist. Three kilometers offshore, surrounded by fish and – you guessed it – plastic, he would research, work in the lab and dive. After a few years, he went on to study for an MBA at Tel Aviv University: “I wanted to learn how to develop technologies and businesses that are focused on ecological solutions. While studying ‘Entrepreneurship and Innovation Technology Management’ at TAU, I was also working at a venture capital fund, handling portfolios of ten renewable energy companies. It taught me a lot about the needs of startups in the renewables field.”

 

Plastic Back’s technology offers waste handlers to help treat their waste streams and create profit, as an alternative to landfill

Bring it Back: A Chemical Solution

Tal Cohen and his Israeli based startup company “Plastic Back” offers an interesting solution: “By way of ‘reverse engineering’, we are able to convert plastic waste back to its original, valuable form of oils, waxes and other valuable chemicals. With unique chemicals, ratios and timing, our technology breaks down the carbon-to-carbon bonds of the plastic polymer to liquid fractions that can be (re)used by the petrochemical industry.” Brilliant, isn’t it?

“While transforming plastic back to oil through burning is already done, that requires very high temperatures, between 600-1000 degrees Celsius, which constitutes an environmental and financial burden. The real innovation here, is that we manage to convert the plastic to oil by chemical means only, and at room temperature. So there’s an environmental advantage which is expressed financially, and it is also advantageous energy-wise. The goal is to offer an alternative to the traditional drilling for additional non-renewable oil.”

The idea, Tal got while he was working with one of the aforementioned portfolio companies: “Once I felt like I had learnt enough about the startup world and what setting up a startup entailed, I went on a mission to find technologies. At The Hebrew University, they had a technology in place from 2016-17. It spoke to me, as it was related to plastic, which I was intimately familiar with from my time working underwater as a marine biologist, and I also knew that the renewables field is evolving.”

“The technology was in place, and so I decided to find out if there was any business interest for it. In 2019, I attended Shell’s competition in Holland, which is the largest energy competition in the EU, where more than 250 companies competed during 10 days of business and technological validation. We ended up in 2nd place. We knew then that there was demand for the crude oil which we were able to convert the plastic back to. Shell was willing to invest and to pay some money up front, so we had some starting capital. I went ahead and founded the company. We have since found an angel investor who invested a certain amount, have received recognition from the European Commission and are taking part in the EU accelerator program.”

Making Waste Vanish and Renewing Non-renewables

Who are the winners with this initiative? “Plastic Back enables a shift from a linear to a circular economy, by closing the loop between the petrochemical industry (including companies such as Shell), which is currently dependent of crude oil drilling and operating under increasingly heavy regulation and pressure, and the waste handlers who receive millions of tons of plastic waste from waste manufacturers, such as agriculture, factories and hospitals and medical devices, most of which goes to landfill. The waste handlers are seeking alternatives, especially as there’s been a fivefold increase in landfill price since 2019. The waste manufacturers, on their side, would gain the ability to treat their waste on site/close by, save expenses on removal and treatment fee and even create profits from their plastic waste.”

Tal is not planning to rest in the coming years, “The research and development phase of our project is completed for the most part. Last year, we successfully proved that there is demand for what we are offering. We have received a grant from the Ministry of Energy to set up our first pilot facility together with an industrial partner in the South of Israel in 2022. A year and a half after that, we would like to set up our first facilities. In five years from now, we should have two or three active facilities, hopefully one of them here in Israel and the rest in Europe.”

 

Tal Cohen presenting his startup at TAU’s Coller $100,000 Startup Competition in July 2021

Featured image: By way of ‘reverse engineering’, Tal’s team is able to convert plastic waste back to its original form.

COVID-19 Immunity Varies Among Genders and Age Groups

TAU researchers contribute a new piece to the puzzle on the effectiveness of COVID-19 vaccination.

As experts continue to learn more about immune responses to COVID-19 and the effectiveness of vaccines, researchers from Tel Aviv University have contributed a new piece to the puzzle. A joint study conducted by researchers from TAU and the Shamir Medical Center (Assaf Harofe) indicates that the level of antibodies changes according to age groups, gender, symptoms, and time elapsed since vaccination. The findings are the latest from the researchers in a series of studies aimed at providing reliable measures on the effectiveness of COVID-19 vaccination.

The new study examined the level of antibodies in over 26,000 blood samples taken from COVID-19 convalescents, as well as vaccinated and unvaccinated individuals.

In vaccinated individuals, the researchers found differences between women and men in the concentration of antibodies in the blood relative to both age and gender. In women, the level of antibodies begins to rise from the age of 51, and is higher than the levels found in men of similar age. This phenomenon may be related change in levels of the estrogen hormone, observed around this age, which affects the immune system. In men, a rise in antibody levels is seen at an earlier age, starting around 35, and may be related to changes in levels of testosterone and the effect on the immune system.

In young adults, a high concentration of antibodies generally signals a strong healthy functioning immune response, while in older demographics it typically indicates overreaction of the immune system associated with severe illness. In general, young adults were found to have a higher level of antibodies sustained for a longer period of time compared to older vaccinated persons. The findings further validate existing evidence that, depending on age, higher antibody count isn’t necessarily equivalent to higher rates of recovery.

Furthermore, the study found that the immune response of vaccinated individuals (after two doses) is much stronger than that of people who have recovered from COVID-19. The findings show that vaccinated individuals have four times the level of antibodies compared to convalescents.

The study was conducted by Tel Aviv University’s Prof. Noam Shomron, Head of the Computational Genomics Laboratory at the Sackler Faculty of Medicine and a member of the Edmond J. Safra Center for Bioinformatics and Dr. Adina Bar Chaim from the Shamir Medical Center. The data were collected by Dr. Ramzia Abu Hamad from the Shamir Medical Center, and analysis was conducted by Guy Shapira, a PhD student at Prof. Shomron’s laboratory. The study was published in Medrxiv

What to Do When Everything is Vulnerable and Under Attack

Highlights from Cyber Week 2021.

 

 

Israel’s 11th Annual Cyber Week Conference, this year hosted in a hybrid in-person and online format, was attended last week by 2,500 in-person and 3,700 online, among them top Israeli politicians, global cyber policymakers and executives from multinational companies and cutting-edge startups from more than 80 countries.

TAU Professor behind Israel’s ‘Magic Circle’ and Cyber Week

Prof. Isaac Ben-Israel, Conference Chairman of Cyber Week, submitted a plan to the government in 2011 after his appointment by the Prime Minister to head a multidisciplinary task force in order to prepare Israel for future cyber threats. The plan outlined a solution whereby an entire ecosystem, or ‘magic circle’ was built (combining the forces of defense and government, industry and academia) to handle new and unpredicted cyber threats on a continuous basis. Ever since, the annual Cyber Week Conference at Tel Aviv University has been an important meeting point for experts from industry, government and academia across the globe.

Participants at Cyber Week 2021

Will The Iron Dome be Joined by A “Cyber Dome”?

In his speech at this year’s event, Israel’s Prime Minister Naftali Bennett stressed the need for further cooperation and invited other nations to join a global “Cybernet Shield” initiative to jointly coordinate the fight against cyber threats globally, stressing that “(…) if you fight alone you will lose, but if we fight together we will win.”

2020 was a rough year, with more than 300M ransomware attacks worldwide. Cyber warfare continues its rapidly growing military importance and global cyber security investment is skyrocketing, 80% of which went to US and Israeli companies. “Everything is vulnerable and everything is under attack” Bennett warned. 

Israel’s Defense Minister, Benny Gantz, expressed similar sentiments and called for a cyber-version of Israel’s famous anti-missile defense system, the Iron Dome, “Cyber is now a vulnerable space that must be protected like the sea, space, air, and ground”. He called for a no-tolerance policy by the Israeli government when it comes to cyberattacks, “Our message is very clear – be it a rocket, or a keyboard, we will not tolerate anyone to threaten our people.”

And the Winner of This Year’s Cyber Shield Award… 

True to tradition, also this year the Cyber Week Committee nominated a winner of the Cyber Shield Award, based on contributions to Israel’s cyber ecosystem. This year’s prize was awarded the Israeli Defense Forces (IDF) for their longstanding, inspiring and groundbreaking achievements in promoting the Israeli cyber scene and bringing Israel to the status of a global cyber power. 

The IDF is awarded the Cyber Shield Award. From left to right: Major General Lior Carmeli, Major General Tamir Hayman,  Gili Drob-Hiesten Managing Director ICRC, TAU President Prof. Ariel Porat and Prof. Isaac Ben Israel 

The conference is a joint effort by Tel Aviv University’s Blavatnik Interdisciplinary Cyber Research Center (ICRC) and Yuval Ne’eman Workshop for Science, Technology and Security, and the Israeli National Cyber Directorate under the Prime Minister’s Office and the Ministry of Foreign Affairs. 

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]