Skip to main content

Tag: Combined Sciences

Careful, it’s viral

Got questions about the deadly coronavirus? TAU researchers have the answers

Are global preparations for the coronavirus outbreak enough? Is the bad PR bats have been getting justified? And how do you build two brand new hospitals in a few days? Tel Aviv University researchers explain it all.

The usual suspects

Everyone’s looking for someone or something to blame for the outbreak and spread of the deadly coronavirus, and again, as in the Ebola and SARS eruptions years ago, the main suspects are the bats.

Dr. Maya Weinberg of the School of Zoology and a member of the research group of Professor Yossi Yovel, comes to the defense of the winged mammals: “It’s true that there’s a 96% match in the genomes of the coronavirus found in the first patients, to those found in bats. But that’s not enough. First, we like to work with higher match rates, at least 99%. Second, the corona is a multifaceted virus, and I wouldn’t be surprised if today, several weeks since the outbreak, patients are in hospitals with different genetic sequence.”

Could it be that the infection was caused by eating sick bats? “The answer is yes. A sick bat can be contagious. Is it advisable to eat sick animals, whether they are bats or rats or chickens? The answer is no. It’s not advisable to eat any animal before veterinary sanitation,” says Dr. Weinberg.

Although everyone is pointing an accusing finger at bats, they’re not considered an animal that can cause an outbreak. “To be considered an animal that’s spreading disease, two conditions have to be met: the first, that the animal will not die from the virus it carries, and the second – that the virus will replicate in the fluids and organs of the body. This will create viral DNA that can be spread further. Bats don’t meet these two conditions,” she explains. “The bats’ immune system adjusts and constantly “corrects” itself. For example, when they fly at night to look for food, their body temperature rises to 42 degrees (Celsius), which naturally clears their bodies and takes away pathogens. They have the ability to deal with foreign or decomposing DNA, and they also have antiviral proteins that our body expresses only during illness, but are found regularly in the blood of bats.”

One good bat on the tree is better than a sick bat on the plate. (Photo: Jonathan Ben Simon)

The government that built two hospitals within a week

To cope with the growing medical burden, the Chinese government has undertaken a task that seems impossible – setting up two hospitals in a matter of days to provide care to coronavirus patients. The Chinese accomplished the mission within ten very intense days (and nights), with over 10,000 workers working efficiently around the clock. Two new Wuhan hospitals opened, in the region the virus first broke out, and are expected to take in about 1,500 patients each.

Professor Asaf Goldschmidt, from the Department of East Asian Studies, is not surprised. In a recent article, he shows how, a thousand years ago, during the Song Dynasty in the 11th and 12th centuries, the Chinese government addressed the outbreak of plague.

“The Chinese state is organized into bureaucratic organizations, and some deal with public health, medical aid and food distribution. Long before the Westernized bureaucracy, it was already working in China, with the main goal being efficient tax collection. The Chinese already understood what every welfare state advocate says today – to collect taxes, the state has to give something back,” explains Prof. Goldschmidt.

“In China, the Emperor ruled, and some of his status was also derived from the willingness to help the people in times of distress. When events like natural disasters or epidemics happened, the Chinese saw it as a sign that the gods were asking the emperor to improve his behavior, including concern for his people. Even today, the legitimacy of the Communist Party comes partly from concern for the population, “he concludes.

Only in China. From a parking lot to a hospital in 10 days. 

From the Far East to the Middle East

Even if you have no plans to visit China, the coronavirus is spreading rapidly and may reach Israel as well. Dr. Bruria Adini is the head of the Department of Emergency Management and Disaster Medicine from the School of Public Health, in which students learn about the various risks facing society in Israel and the world, discuss their implications and contribute through research activities.

“Coping with communicable diseases is a global challenge, and Israel, as part of the international community, is committed to working effectively to address that risk.” Dr. Adini explains. “Appropriate preparation includes formulating protocols and procedures, maintaining equipment inventory, medication and vaccines (if available), and training routinely so that essential steps such as epidemiological investigation, isolation, closure, and medical care can be taken quickly.

The health system in particular, and Israel’s emergency systems in general, have for several decades been dealing with a variety of dangers, including those resulting from the spread of pathogens such as viruses or bacteria (by natural outbreak or as a result of human acts, such as biological terror). When there’s an event that has the potential to impact society in Israel, such as the current coronavirus, defined by the World Health Organization as an emergency event, it’s of course the state’s duty to take precautions and reduce the severity of its impact on society in Israel. To date, most patients are in China, but the possibility of the disease spreading to Israel can’t be excluded.”

Global warming is bad for your health

“It’s important to know that with global warming, more and more new epidemics like the coronavirus and SARS are expected to occur,” Dr. Adini notes. “This is because things like deforestation, expansion of urbanization or agriculture, bring humans closer to nature (animals and plants), which makes them more susceptible to those naturally occurring viruses. For centuries, viruses have survived and evolved in wild animals to not harm the host body, but when they pass from animals to humans, they can quickly cause great damage. The weather can also affect the spread of the virus. For example, the degree of humidity in the air can allow the virus to survive for a longer time (for example, when the person sneezes) compared to drier air, thus actually helping climate conditions to transmit the virus.”

Expanding urbanization processes leads nature into our backyard, which can be dangerous

Is what has been done so far in countries like China to prevent the spread of the virus satisfactory? “One major problem is that in a significant number of countries in the world there’s not a sufficiently well-developed system that can monitor the entire affected population, including early identification of the exposed and infected population. As a result, the total number of carriers and / or patients may be unknown, so all countries have to prepare for a scenario where the scope of the disease is much larger than currently known.

Dealing with an infectious disease, which people contract even before they have obvious symptoms, is a significant challenge, even for large countries. Since the disease doesn’t have a vaccine or drug treatment, it’s important to take steps to contain the event, such as quarantine the affected, isolate patients and restrict movement, to prevent the spread of the virus and minimize its damage. Proper steps are now being taken, but it is unclear whether, at the beginning of the epidemic in China, these actions were taken as quickly as necessary.

Israel is taking precautionary measures, including distributing protective clothing to medical teams and other first responders, creating a policy for isolating patients and people who are suspected of being exposed to the disease. Israel also has a very good ability to provide palliative care to patients.”

Do you think the information currently being distributed about the coronavirus is trustworthy? “It should be based only on reports and guidelines from officials, and take the informal reports with a grain of salt. Fear is a natural state of affairs in these situations, and knowledge reduces anxiety. However, in a state of fear and great uncertainty, social networks are spreading a lot of rumors and “fake news”, which distorts reality and causes tension and anxiety beyond what’s necessary. It’s important to be careful and follow the Ministry of Health’s guidelines for maintaining hygiene and care.”

Recalculating: when research starts one way and ends another

From medicine to geology to archaeology, sometimes science takes an unexpected turn into uncharted territory

We’re always told that the journey is just as important as the destination. This is true in many aspects of life, but perhaps nowhere as much as in scientific research. Flexibility, curiosity, and attention to detail can lead to a treasure you weren’t even expecting to find. TAU’s scientists talk about research that began one way and ended another, thanks to a few surprises along the way. A treasure in a pot A team of archeologists on an excavation mission found that sometimes, the appearance of a clay pot is no indication of its contents. “On one of the excavations in Megiddo, we removed the partitions separating the different sections of the dig and found a whole clay pot full of dirt,” says Naama Walzer, a doctoral student in the Department of Archeology and Early Eastern Cultures at Tel Aviv University. “We packed it up and planned to send it to a molecular residue lab to find out what used to be stored inside of this pot, which we dated to around 1100 BCE.” The pot was stored in an office, but after a while it became clear that preservation in that area of the excavation wasn’t up to standard, so the team decided to empty the pot, in a controlled way, and poured out its contents on the table. “We weren’t expecting to find what ended up being inside: a treasure trove of jewelry, considered one of the greatest troves found in Israel from the Biblical period!”   The pot discovered in Megiddo. (Photo courtesy of the Sonia and Marco Nadler Archeology Institute) Among other things, the trove contained nine large earrings and a seal ring, over a thousand small gold beads, and silver necklaces and jewelry. “This is how we found the big treasure of Area H, which is now part of the permanent exhibition at the Israel Museum in Jerusalem,” concludes Walzer.   Earrings, rings and gold beads. A huge treasure from the Biblical period. (Photo courtesy of the Sonia and Marco Nadler Archeology Institute) The longest record in the lowest place We’ve all heard that still water runs deep, but did you know it can run deep enough to be remembered hundreds of thousands of years later? “I was looking for places to sample a rock that sank, in a still setting, to the bottom of the Dead Sea,” recalls Prof. Shmulik Marco, head of the Porter School of the Environment and Earth Sciences. “The goal was to measure the magnetic properties of the rock in order to reconstruct the changes that have occurred in the Earth’s magnetic field. This information is essential to understanding one of the most important mysteries in geology. Scientists still have no satisfactory explanation for the mechanism that causes changes in the magnetic field, such as surprising reversals or constant changes in the position of the magnetic poles. While sampling the rocks, I found layers that looked “messy”. The study took an unexpected turn when I realized the “mess” was the result of earthquakes, and that became the main focus of the research.”   The lowest place: layers of rock at the Dead Sea Because modern seismographs have only existed for about a century, which is barely a moment in earthquake terms, it’s impossible to know how a specific area behaves over long periods of time. In Israel, for example, there’s documentation from the Biblical period (about 3,000 years ago), which is still considered very little. “But now we have a record of the earthquakes that happened around the Dead Sea in the last 220,000 years. That’s considered a unique, world record, because there’s no other documentation in the world that’s so long and continuous,” concludes Professor Marco.   Neat vs messy: A layer of rock in which the natural order was disturbed A miracle of light As she was nearing the end of her postdoctoral studies at Yale University, Dr. Ines Zucker of the Iby and Aladar Fleischmann Faculty of Engineering decided to advise an undergraduate student in a promising, short-term study. But as we all know, the only thing you can count on in life is that everything changes: “The purpose of the study was to show a difference in damage to liposomes (microscopic spheres filled by fluorescent fluid and surrounded by a membrane, used in medicine and in scientific studies of biological membranes) by a nanomatter called MnO2, produced in various structures,” explains Dr. Zucker. “In the past, we’ve shown a fluorescent fluid leak (i.e., liposome damage) was dependent on the surface of the nanomatter, and this time we wanted to show it also depended on its structure. But… research has its own rules – we couldn’t find the kind of damage we were looking for. Right as we were about to give up on the study, we took the system to a fluorescence microscope, where we saw that the liposomes and the nanomatter interact in a way we’ve never seen before in this context: the liposomes envelop the nanomatter, but remain whole, intact spheres without leakage! It was like a miracle of light.”   “Many times unexpected discoveries surprise us.” Dr. Zucker in the lab A star (re)born For Dr. Iair Arcavi, of the Department of Astrophysics at the Raymond and Beverly Sackler Faculty of Exact Sciences, a routine evening of surveying space through a robotic telescope led to discovering a brand new phenomenon: the resurrection of a star. “A few years ago, we came across a ‘star that didn’t want to die’ and kept exploding again and again,” Dr. Arcavi says. “Every night the telescope would find lots of new things, most of them uninteresting. Even with this supernova (which is a star that exploded), we initially thought it was uninteresting, because when the survey first caught it, it was in the dimming stage, and we thought we’d missed the interesting part. We noticed for weeks that the supernova was starting to get bright again, which is something that shouldn’t happen, so that piqued our interest and made us follow the supernova with additional telescopes.”   A supernova exploding far, far away “Usually, when a star explodes, the light intensity goes up and down and eventually disappears after a few months. In our case, the light intensity went up and down, then did it again and again, for a total of five times over two years. What surprised us even more was when we discovered that this star actually exploded in 1954, and after a star explodes, it’s not supposed to explode again, because the explosion destroys the star. To this day no one’s been able to explain it, and we haven’t seen a similar event since.”   The sky is full of surprises: Dr. Arcavi and the Hawaii observatory Two for the price of one Have you ever looked for a solution to a problem, only to solve an entirely different problem along the way? That’s exactly what happened to Prof. Noam Shomron of the Sackler School of Medicine. “We wanted to develop a way to identify a specific disease, but along the way we discovered more options, so we made those additional targets of the research,” he says. “We tracked thousands of pregnant women, to characterize blood molecules that can be early markers of preeclampsia, a condition that can only occur after the 20th week of pregnancy. Not only did we find those molecules, we also managed to characterize other molecules, that could be an indicator of gestational diabetes.” (There’s no connection between the two conditions, except that they both occur during pregnancy.) “What’s exciting about this story is that there’s still no way of identifying, in the first trimester, using a simple blood test, problems that can occur in the second or third trimester. But our discovery will allow simple blood tests to be developed to identify both conditions, which will then lead to preventative measures at an early stage, and ensure the wellbeing of both mother and baby.”   Professor Shomron talking about his accidental discovery at an “Atnahta” event at TAU

Can we beat the heat?

The creative ways animals, plants and computers have of using every drop of water when the temperatures rise

It’s no secret that global warming is upon us. We’ve experiencing more and more extreme conditions, with longer dry periods, shorter but stormier rainy seasons, and increased flooding. At Tel Aviv University, our researchers are monitoring the animals and plants that live and thrive in extreme conditions, learning about the unique mechanisms they’ve developed, and developing ways that will help us, and even our electronics, survive the intense heat.

Study the beetle’s ways

Dr. Bat-El Pinchasik, from Tel Aviv University’s School of Mechanical Engineering, was fascinated by the creative ways beetles and lizards have of utilizing the water around them, and today she develops biomimetic systems that mimic desert animals’ solutions to the water problem. “Insects and lizards that live in areas without a lot of access to water have to collect it from other sources, for example, from the air and from morning fogs,” explains Dr. Pinchasik. “At times, when temperatures are lower, when there is higher wind and humidity in the air – the air condenses on their bodies. Evolution has made them a ‘smart surfaces’ that spontaneously transports the water that’s been collected directly into their mouths.”

The Texas horned lizard, for example, has three-dimensional trenches on its back that serve as its personal superhighway. The Namib Desert beetle’s body is mostly hydrophobic (water repellent), but is also sprinkled with hydrophilic micrometric protrusions, which concentrate droplets of water in specific places, and roll them directly into the beetle’s mouth. “Our aim is to define the rules that make these sorts of mechanisms efficient, develop smart materials similar to the ones the beetles have, and to use advanced 3D printing technologies to build systems that can change lives in areas where water is inaccessible,” says Dr. Pinchasik.

It turns out that there are many places in the world where access to water is a problem, and strange as it may sound, it’s not just countries located in deserts. “Even in Europe, which is very rich in water, there are places where there are no systems that move water from place to place,” she explains, continuing: “One of the problems is that most systems today aren’t based on smart materials, and the quantities they manage to collect at a time are small. That’s what we want to improve. Building local water collection points and low-cost efficiency will pay off in a big way.”

Texas horned lizards

Save every drop. Texas horned lizards.

Switching to the night shift

Think animals are creative? You won’t believe how plants learned to endure and survive extreme climate. Dr. Nir Sade, from the School of Plant Science and Food Security at the George S. Wise Faculty of Life Sciences, studies how wild plants cope with the increase in dryness and heat. He seeks out and isolates the traits and mechanisms of resilience they develop and helps to introduce them, through genetic engineering and hybridization, to the crops accustomed to a moist and luxurious life, that are now unable to keep up with the changes in conditions.

“Plants have a number of ways to deal with global warming and the extreme conditions it brings with it,” Dr. Sade explains. “The first is evolutionary, in which different plants have changed their photosynthesis process (a process in which the plant absorbs carbon dioxide and light, turning them into energy and emitting oxygen in return). Some have learned to streamline the process even under conditions of high heat and dryness. Corn, for example, has learned to concentrate the carbon dioxide it absorbs into specific, unique cells in its leaves, instead of the entire leaf, thus essentially “enriching” the carbon dioxide to maintain the efficiency of the process. Others developed a more extreme mechanism and shifted into night mode. Cacti, for example, absorb carbon dioxide at night instead of during the day, when the temperature and water loss are not as high, and save the fixation process for daytime. That’s how they manage to survive. “


Changing to night mode. Cacti in the desert.

And there are other strategies as well: “Some plants don’t want to deal with the conditions threatening them and prefer to escape them. These have adopted the motto: live fast, die fast. That is, they’re accelerating their life cycle,” says Dr. Sadeh. “It’s a strategy particularly suited for extreme conditions like a Mediterranean climate, but it comes at a cost: the amount the plant produces can be smaller.”

Some plants prefer to “look away” until the storm passes, which means avoiding extreme conditions, with the help of water retention in the leaf. “Plants that use the avoidance mechanism reduce water loss from the leaves by closing the stomata (unique cells responsible for the carbon dioxide water expulsion), and/or reducing the surface area of ​​foliage (thus reducing the area from which water is lost). They also invest in water transfer efficiency, from the roots up to the leaves, by deepening and expanding the roots.”

The toughest ones have developed a tolerance for the extreme conditions. “This is a group of plants that, despite the earth getting dryer, have learned to biochemically adapt, create molecules and synthesize proteins that protect them from harm,” says Dr. Sade, adding: “Because most forecasts do not anticipate an improvement in the extreme climate change the world is experiencing, many resources are now being invested by commercial companies, through to government investments and university labs, to understand the molecular and genetic basis of plant response to extreme conditions.”

Genetically engineered tomato shrubs

Be tough. Right: genetically engineered tomato shrubs that are irrigated with salt water, next to regular tomato shrubs

What do a laptop and a horse have in common?

Not only the flora and fauna need water to cool down and freshen up. Ever left your cellphone in the sun, to later find it not working? Without sufficient cooling, this is what happens to all electronic components. Nowadays, cooling systems are installed in computers that run a cooling liquid straight on the computer chip, through pipes only a few millimeters in diameter. The Micro Flow and Heat Transfer Laboratory of Dr. Herman Haustein, at the Iby and Aladar Fleischman Faculty of Engineering, investigates cooling mechanisms that are as thin as a single strand of hair. It’s a breakthrough study for building systems in the present and in the future.

“In these tiny sizes, phenomena that are usually ignored in systems like our home plumbing, are central and must be taken into account in order to characterize the flow, “explains Ido Laufer, an engineer at Dr. Haustein’s lab. “The need for our research is at the forefront of the high-tech industry. For example, today, one of the factors limiting the electronics industry is the density of components that require power supply. On the one hand we want to fit as many components as possible in as little space as possible, and on the other – to find ways to cool them efficiently,” he continues. “In order to cool components, we need a cold flow supply, which will remove heat from micron-sized systems (a hair is 100-50 microns in diameter). Our research contributes to the design of complex electronic systems such as computers, defense systems, and medical devices.”

The capabilities of the equipment in Dr. Hausstein’s lab are unique, therefore it’s used by researchers from many different disciplines, from the study of bats to the discovery of new materials. One popular field is biology. “It’s because every organism is dependent on the flow of liquids for its food supply and for removing waste, through similarly sized tubes,” Laufer reveals. “In the hot days we’re currently experiencing, all the balancing of temperatures and maintaining body heat depends on the flow of liquids in our bodies. Water that we drink should reach the cells through the blood vessels, bodily fluids should reach the sweat glands and from there reach the skin to cool us, and more. The equations we’re developing aren’t dependent on a specific field of study, but provide a mathematical, physical solution, so they can be used in biological research as well as in other disciplines.”

Researcher Rona Eckert of the School of Zoology, uses the unique equipment in the laboratory, as part of a study on heat conservation in the body of moths

Researcher Rona Eckert of the School of Zoology, uses the unique equipment in the laboratory, as part of a study on heat conservation in the body of moths

Are two brains better than one?

In scientific research, sometimes 1 + 1 equals more than 2

What do scientists need to become a winning team? Is it true that the opposites attracts? Or is it that research based on a rivalry brings about the best results? Let’s look at some of the famous scientist pairings that, if they’d hadn’t known of each other, might not have given the world their amazing discoveries, ideas, and inventions that have changed our lives profoundly.

Didn’t go with the flow

Thomas Alva Addison and Nicola Tesla were both great inventors of the 19th century, who brought about revolutionary technological changes and made our modern life possible. Tesla was a talented physicist and electrical engineer who emigrated from the Austro-Hungarian Empire to the United States and was nicknamed the “Wizard of the West.” He found his first job with businessman Edison, known as “The Inventor from Menlo Park”. The two collaborated to promote the use of electrical systems, and after a while parted in anger after Tesla claimed that he had not received the promised compensation for his work.

A few years later, when Edison tried to market his electric bulb, he also developed an electric grid based on direct current and competed for the opportunity to build a power plant that would supply electricity to the entire eastern coast of the United States. Tesla, who developed the alternating current with industrialist George Westinghouse, thus became a direct rival of Edison, not to mention his enemy, overnight.

“So began one of the most powerful technological wars mankind has ever known – the war of currents,” says Prof. David Mandelowitz of the School of Electrical Engineering at the, Iby and Aladar Fleischmann Faculty of Engineering at Tel Aviv University. “When Tesla joined George Westinghouse, this war went beyond the technological aspect and also spread to the realm of commerce.”

Edison tried to brand the invention of his rival as a tool of murder, more suitable to executions in the electric chair than household appliances, but the move didn’t succeed. The war of the currents between the two ended when Edison was at a disadvantage, and the Tesla power station successfully supplied electricity to the entire East Coast. “In 1893, when the President of the United States activated the main lighting fixture in the city of Chicago, the victory of Tesla and Westinghouse was determined,” says Prof. Mandelowitz. “The rivalry between Tesla and Edison is now a parable for a pair of researchers whose technological dispute became a personal and economic war, which shocked the global research community.”

While working together, they promoted the invention of the Dynamo, invented by Edison, but it seems that when they worked against each other, they worked harder, causing us all to benefit. From the straight current we get batteries, and from alternating current – household and industrial power consumption. Both kinds of current benefit fans of heavy metal rock bands, especially the band AC/DC, who are named after the sign that symbolizes both types of currents and appears on electrical installations.

Philosophy, love, religion and Zionism

No screenwriter could think of more interesting plot twists than those of Hannah Arendt, one of the most important political philosophers of the 20th century. Her work and life were influenced by her ambivalent relationship with the State of Israel, with Zionism and with her married lecturer Martin Heidegger, who later became her lover and an activist in the Nazi regime.

Arendt met Heidegger as a young student, when he was already an admired professor, who was married, at the University of Marburg in Germany. A passionate romance developed between the two, interrupted by the Nazis’ rise to power in 1933, when Arendt left Germany. “Martin Heidegger is, in the eyes of many, one of the great German philosophers or great philosophers in the twentieth century,” says Prof. Joseph Schwartz, head of the School of Philosophy, Linguistics and Science Studies at the Lester and Sally Entin Faculty of Humanities. “At the same time, he’s a very controversial philosopher, both because of his work and, in particular, because of his active involvement in the Nazi regime. Hannah Arendt, also one of the great philosophers of the twentieth century, mostly acquired that status after World War II when she lived in America, to which she had to emigrate when she fled Germany after the Nazis came to power.”

Arendt never hid her Jewishness and was arrested because of her opposition to the right-wing regime in her homeland, and later lost her German citizenship. On the one hand, she was a political activist and investigated anti-Semitism in Germany, was considered close to Jewish intellectuals and promoted immigration to Israel, and on the other hand she didn’t turn her back on those who favored the murder of her people. She had a complex relationship with the State of Israel, which became particularly tense in light of her review of the Eichmann trial and the publication of her controversial book “Eichmann in Jerusalem – A Report on the Banality of Evil.”

The connection between Arendt and Heidegger resumed at the end of the war. “In the coming decades, Arendt is going to significantly advance Heidegger’s thought in English and in the United States, and there is no doubt that she helped raise his status internationally, and that impact still holds to this day. The letters the two exchanged were published and translated into Hebrew, and beyond gossip about the relationship between a professor and a student – they contain mainly fascinating philosophical discourse between two great philosophers, who saw themselves as philosophers first.”

Over the years, in the various articles Ardent published in the field of existential philosophy, she referred to Heidegger’s views, and even if she criticized them, she never denounced him. Heidegger’s diaries from the period of World War II (“The Black Notebooks”) were recently published, and they only emphasize how Nazi ideology combined with his philosophy. Arendt’s conduct regarding the identity of the State of Israel and Heidegger has raised heated debates in academia and beyond.

A combination of factors that led to the Nobel Prize

The fascinating pair of researchers Maria Skolodawska from Poland (later Marie Curie) and Frenchman Pierre Curie’s passion for mathematics, physics and chemistry came from their individual passions. Each of them established his position in the field of physical and chemical phenomena, but the combination of their forces in the research on radiation and radioactivity led to a joint win of the Nobel Prize in Physics.

As a woman, Maria had to work harder. Many doors were closed to her in her native Poland during her years of developing a career as a gifted physicist and chemist, which began at the end of the 19th century. But it seems that all of this only made the young Marie a pioneer in many ways: she completed two degrees in chemistry and physics at the Sorbonne in Paris after her request to study at the Polish University was rejected due to the political inclinations of her family. She was the first woman to teach in this respectable institution after she was appointed professor of physics. She also broke the glass ceiling as the first woman to win the Nobel Prize, and did it again eight years later when she won it again, this time in chemistry. In fact, she is one of the only two people in history to have won the prestigious award in two different fields.

When they met, Pierre Curie was an instructor at the School of Physics and Chemistry in Paris, and Maria Skolodawska was a young scientist. “Pierre’s achievements in his doctoral work (magnetism, pyroelectricity, piezoelectricity) gave him a very distinguished name, along with his brother Jacques, who contributed to the study,” says Dr. Israel Hayim Shek of the Raymond and Beverly Sackler Faculty of Exact Sciences. “Marie (who changed her name when she emigrated to France) becomes Pierre’s assistant in his lab and soon became a full partner in laboratory research and theoretical work.” The two found a great common interest in the study of radioactive materials, and their discoveries brought them together both professionally and personally. They married in a secular ceremony and devoted their lives to the study of radioactive materials.

“A great expertise in chemistry and physics, along with a sharp, analytical perspective, and a lot of dirty work and determination go into their discoveries, in the face of frustrations, disappointments, a lack of budgets, a shaky economic situation. But they invest everything into science,” Dr. Shek says. In 1898, after years of refining uranium ore, they identified two new chemical elements.

The first is called Polonium, named after Mary’s homeland, and the second is Radium, named after the Latin word “radius”, meaning “ray of light,” as it glows in the dark. In the same year their first daughter, Irina, is born. In 1904, a year after receiving the Nobel Prize, their second daughter, Eva, was born, and the Curies raised their two daughters on informal education, exposing them to the principle science and scientific research, along with things like learning Chinese, sculpture, self-expression and play.

In 1903 they, along with Henri Beckerle, received the Nobel Prize in Physics for their research, and in 1911 Marie again won the prestigious award, this time in the field of chemistry, in recognition of the discovery of these two elements.

“One of the questions people tend to ask is whether Marie Curie would have been able to achieve her great success without her husband’s help, or would Pierre have succeeded in finding his discoveries without Marie as an assistant? It’s difficult, of course, to answer conclusively. But there is no doubt that beyond the romanticized aspects (a foreign woman, poverty, marriage, hard work under pressure), the joint work of the couple pushed them both forward, far beyond what might have happened if they had not cooperated, and had it not been for the mutual respect that they felt for each other,” says Dr. Shek and concludes “Perhaps without Pierre’s recognition of Mary’s great abilities and uncompromising push, her work would not have been possible in the atmosphere of the conservative society at that time.”

It is believed that Mary paid for her many years of research. She died at the age of 66 from a pre-leukemic syndrome caused by her exposure to these dangerous substances for many years. Pierre had been killed earlier in a fatal car accident, in their tenth year of marriage, when Marie was accepted as a full professor at the Sorbonne. The pair of researchers was immortalized by the scientific community. The unit measuring radioactivity used to be named “curie” in their honor, as was the radioactive element curium.



Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]